Vol. 1 No. 2 (2021): December
Open Access
Peer Reviewed

GOLD PRICESFORECASTING USING TRIPLE EXPONENTIAL METHOD

Authors

Khairawati , Wahyu Fuadi , Rizki Ramadhansyah , Dedi Fariadi

DOI:

10.54443/ijebas.v1i2.79

Published:

2021-12-12

Downloads

Abstract

Governments, organizations, and citizens have taken an interest in gold price fluctuations. Gold price forecasting that is accurate may effectively capture price shift tendencies and reduce the effects of gold market volatility. However, due to the multi-factor and nonlinear nature of the gold market. The triple exponential smoothing strategy is used in this study to predict the rise in a value over time since it can replicate trends and seasonal patterns. according to the gold price swings pattern and seasonal components at the same time To calculate system accuracy, the Mean Absolute Percentage Error is employed (MAPE). With alpha 0.15 and beta 0.85 as parameter values, the triple exponential smoothing (TES) approach achieves an accuracy rate of 86.93 percent and a MAPE of 12.49 percent in this study.

Keywords:

gold price market volatility gold market trends seasonal patterns

References

Alameer, Z., Elaziz, M. A., Ewees, A. A., Ye, H., & Jianhua, Z. (2019). Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resources Policy, 61, 250–260. https://doi.org/10.1016/J.RESOURPOL.2019.02.014

ALTAN, A., & KARASU, S. (2019). THE EFFECT OF KERNEL VALUES IN SUPPORT VECTOR MACHINE TO FORECASTING PERFORMANCE OF FINANCIAL TIME SERIES. The Journal of Cognitive Systems, 4(1), 17–21. https://dergipark.org.tr/en/pub/jcs/570863

Ayele, A. W., Gabreyohannes, E., & Edmealem, H. (2021). Generalized Autoregressive Conditional Heteroskedastic Model to Examine Silver Price Volatility and Its Macroeconomic Determinant in Ethiopia Market. Journal of Probability and Statistics, 2021. https://doi.org/10.1155/2021/5095181

Barrow, D., Kourentzes, N., Sandberg, R., & Niklewski, J. (2021). Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning. Expert Systems with Applications, 160, 113637. https://doi.org/10.1016/J.ESWA.2021.113637

Chen, J., Zhu, X., & Zhong, M. (2019). Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis. Resources Policy, 61, 489–500. https://doi.org/10.1016/J.RESOURPOL.2018.04.015

de Oliveira, E. M., & Cyrino Oliveira, F. L. (2018). Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 144, 776–788. https://doi.org/10.1016/J.ENERGY.2017.12.049

Evamelia, E., & Panjaitan, Y. (2019). ANALISIS PERANAN EMAS DAN OBLIGASI PEMERINTAH SEBAGAI SAFE HAVEN PERIODE 2014—2018. BALANCE: Jurnal Akuntansi, Auditing Dan Keuangan, 16(2), 212–236. https://doi.org/10.25170/BALANCE.V16I2.1624

FAUSTINA, R. S., AGOESTANTO, A., & HENDIKAWATI, P. (2017). MODEL HYBRID ARIMA-GARCH UNTUK ESTIMASI VOLATILITAS HARGA EMAS MENGGUNAKAN SOFTWARE R. Unnes Journal of Mathematics, 6(1), 11–24. https://doi.org/10.15294/UJM.V6I1.11681

Humphreys, D. (2017). In search of a new China: mineral demand in South and Southeast Asia. Mineral Economics 2017 31:1, 31(1), 103–112. https://doi.org/10.1007/S13563-017-0118-7

Istamar, ., Sarfiah, S. N., & Rusmijati, . (2019). ANALISIS PENGARUH HARGA MINYAK DUNIA, HARGA EMAS, DAN NILAI KURS RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN DI BURSA EFEK INDONESIA TAHUN 1998-2018. DINAMIC : Directory Journal of Economic, 1(4), 433–442. https://doi.org/10.31002/DINAMIC.V1I4.805

Juhro, S. M., & Iyke, B. N. (2021). Consumer confidence and consumption expenditure in Indonesia. Economic Modelling, 89, 367–377. https://doi.org/10.1016/J.ECONMOD.2019.11.001

Majid, R. (Rumana ). (2018). Advances in Statistical Forecasting Methods: An Overview. Economic Affairs, 63(4), 295479. https://doi.org/10.30954/0424-2513.4.2018.5

Prananingtyas, P. (2018). PERLINDUNGAN HUKUM TERHADAP INVESTOR EMAS. Masalah-Masalah Hukum, 47(4), 430–444. https://doi.org/10.14710/MMH.47.4.2018.430-444

Qasim, T. B., Iqbal, G. Z., Hassan, M. U., & Ali, H. (2021). Application of Markov Regime Switching Autoregressive Model to Gold Prices in Pakistan. Review of Economics and Development Studies, 7(3), 309–323. https://doi.org/10.47067/reads.v7i3.368

Zhang, P., & Ci, B. (2021). Deep belief network for gold price forecasting. Resources Policy, 69, 101806. https://doi.org/10.1016/J.RESOURPOL.2021.101806

Author Biographies

Khairawati, D-III Secretariat Study Program, Malikussaleh University

Author Origin : Indonesia

Wahyu Fuadi, Informatics Engineering Study Program, Malikussaleh University

Author Origin : Indonesia

Rizki Ramadhansyah, Informatics Engineering Study Program, Malikussaleh University

Author Origin : Indonesia

Dedi Fariadi, Department of Electrical Engineering, Malikussaleh University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Khairawati, K., Fuadi, W. ., Ramadhansyah, R. ., & Fariadi, D. . (2021). GOLD PRICESFORECASTING USING TRIPLE EXPONENTIAL METHOD . International Journal of Economic, Business, Accounting, Agriculture Management and Sharia Administration (IJEBAS), 1(2), 269–276. https://doi.org/10.54443/ijebas.v1i2.79