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Abstract 

In recent years, the discovery of Beta-Secretase 1 (BACE1) enzyme inhibitors for more effective Alzheimer’s 
therapy has become a major focus, making in silico research to identify new inhibitors with minimal side effects 

increasingly essential. Ligand-Based Virtual Screening (LBVS) using Quantitative Structure–Activity Relationship 

(QSAR) methods offers a fast and cost-effective alternative to experimental assays. In this study, we propose a 

Conv1D-LSTM-based QSAR model as a novel approach for classifying BACE1 enzyme inhibitors, where 

Conv1D is employed for encoding molecular data and LSTM is used to classify compounds as active or inactive. 

The model is complemented by drug-likeness analysis based on Lipinski's Rule of Five to evaluate the therapeutic 

potential of candidate molecules. The dataset used includes 711 molecular structures, consisting of 278 active and 

433 inactive compounds. Experimental results demonstrate that our model achieves a classification accuracy of 

79.13%, with a sensitivity of 73.02%, specificity of 83.08%, and a Matthews Correlation Coefficient (MCC) of 

56.38%. 

 

Keywords: QSAR, Conv1D-LSTM, Beta-Secretase 1, ligand-based virtual screening, drug-likeness, Lipinski’s 

Rule, Alzheimer’s disease. 

 

INTRODUCTION  

In recent years, the discovery of Beta-Secretase 1 (BACE1) enzyme inhibitors for more effective 

Alzheimer’s therapy has become a primary focus. In silico research remains crucial for identifying novel inhibitors 

with minimal side effects. Ligand-Based Virtual Screening (LBVS) using Quantitative Structure–Activity 

Relationship (QSAR) methods offers a rapid and cost-efficient alternative to labor-intensive experimental 

measurements. In this study, we propose a Conv1D-LSTM-based QSAR classification model as a novel approach 

for BACE1 inhibitor prediction, where Conv1D serves to encode molecular data and LSTM is used for the 

classification of compounds as active or inactive. This model is supplemented with drug-likeness analysis based on 

Lipinski’s Rule of Five to ensure candidate viability as drug-like molecules. The dataset includes 711 molecular 

structures—278 active and 433 inactive compounds. Experimental results show our model achieves an accuracy of 

79.13%, sensitivity of 73.02%, specificity of 83.08%, and a Matthews Correlation Coefficient (MCC) of 56.38%. 

The BACE1 enzyme plays a key role in Alzheimer’s pathogenesis by catalyzing the cleavage of amyloid 

precursor protein (APP) into β-amyloid fragments, which aggregate and form plaques in the brain, thereby 

disrupting synaptic function and causing progressive neurodegeneration [23]. The development of BACE1 

inhibitors aims to reduce β-amyloid accumulation and slow disease progression; however, the primary challenge 

lies in designing molecules that are not only potent but also possess adequate safety and pharmacokinetic profiles 

[23]. Due to the high cost and time demands of in vitro and in vivo biological testing, in silico methods have 

emerged as strategic alternatives for accelerating compound screening and reducing the risk of downstream 

development failures [10]. 

LBVS has gained prominence in modern drug discovery for its ability to efficiently explore large 

molecular libraries without requiring a complete 3D structure of the target protein [10]. One of the most widely 

used LBVS techniques is QSAR, which employs molecular descriptors—such as fingerprints, topology, and 

physicochemical properties—to construct statistical or machine learning models that map the quantitative 

relationship between chemical structure and biological activity [8]. With QSAR, researchers can prioritize 
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compounds with high probability of activity, thus reducing experimental workload and expediting drug discovery 

[8]. 

Despite its efficiency, QSAR modeling can be compromised by noisy molecular data, including salt 

contaminants and PAINS (Pan Assay INterference compoundS), which can lead to false positives during virtual 

screening [21]. Desalting is used to remove irrelevant salt components from molecular structures, while PAINS 

filters eliminate compounds known to cause assay interference [21]. Cleaning the dataset of such artifacts enables 

the construction of QSAR models on a more representative and robust data foundation, thereby improving 

predictive performance [21]. Beyond data curation, drug-likeness analysis based on Lipinski’s Rule of Five is 

crucial to ensure that BACE1 inhibitor candidates are not only biologically active but also possess favorable 

pharmacokinetic characteristics—such as molecular weight, lipophilicity (log P), and the number of hydrogen 

bond donors/acceptors—making them promising drug candidates [13]. This analysis helps select molecules with 

potential for adequate bioavailability, metabolic stability, and minimal toxicity, thereby reducing the risk of 

clinical development failure [13]. 

Deep learning techniques, particularly the combination of one-dimensional Convolutional Neural 

Networks (Conv1D) and Long Short-Term Memory (LSTM), have shown remarkable performance in extracting 

complex features from sequential and structural data [18]. Conv1D is effective for capturing local patterns in 

molecular representations such as PubChem fingerprints or SMILES one-hot encoding, while LSTM is capable of 

modeling long-range dependencies between features [12]. The Conv1D-LSTM architecture combines the strengths 

of both approaches, where Conv1D generates compact and meaningful feature representations and LSTM 

processes these sequences for final classification, thereby potentially outperforming conventional QSAR models 

[18], [12]. Given these preprocessing challenges and the potential of deep learning architecture, this study proposes 

a comprehensive QSAR pipeline for BACE1 inhibitor classification, encompassing desalting, PAINS filtering, and 

Lipinski-based drug-likeness analysis, followed by a Conv1D-LSTM model for active/inactive compound 

prediction. The dataset includes 711 labeled molecular structures, and model performance will be evaluated using 

metrics such as accuracy, sensitivity, specificity, and Matthews Correlation Coefficient (MCC) [8], [13]. The 

following sections will detail the preprocessing methodology, model architecture, and evaluation protocols. 

 

THEORETICAL BACKGROUND 

1 Beta-Secretase 1 (BACE1) Inhibitors 

BACE1 inhibitors are a class of compounds designed to inhibit the activity of Beta-Secretase 1, a key 

enzyme in the formation of β-amyloid plaques in Alzheimer’s disease [2]. BACE1 is expressed on the surface of 

most neuronal cells and cleaves amyloid precursor protein (APP) into a C99 fragment, which is subsequently 

processed into β-amyloid by γ-secretase [2]. By inhibiting BACE1, the accumulation of β-amyloid can be reduced, 

potentially slowing neurodegeneration and cognitive decline in Alzheimer’s patients [20]. 

2 One-Dimensional Convolutional Neural Network (Conv1D) 

One-dimensional Convolutional Neural Networks (Conv1D) are a variant of traditional 2D CNNs, 

designed to process sequential or one-dimensional vector data, such as molecular fingerprints or SMILES one-hot 

encodings [11]. Conv1D applies convolutional kernels along a single dimension of input to extract local patterns; 

each convolutional layer follows operations. 

  

 𝑦(𝑙) = ReLU(𝑤(𝑙) ∗ 𝑥(𝑙−1) + 𝑏(𝑙))  (1) 

 

where 𝑥(𝑙−1)is the input layer , 𝑤(𝑙)convolution 𝑙kernel, 𝑏(𝑙)bias, and ReLU is a linear activation function 

truncated at zero [6]. After feature extraction, pooling—such as average pooling —is used to reduce the 

dimensionality and extract the most informative information from each feature map [24]. 

 

Long Short-Term Memory (LSTM) 

Long Short-Term Memory is a type of Recurrent Neural Network (RNN) designed to capture long-term 

dependencies in sequential data by using a memory cell structure and three main gates: input gate , forget gate , 
and output gate [4]. The basic operations on each LSTM cell are formulated as follows: 

 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (2) 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 𝐶̃𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)̃  (4) 
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 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (5) 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (7) 

 where 𝑥𝑡is the input sequence at time 𝑡, ℎ𝑡−1is the previous hidden 𝐶𝑡−1state , is the previous memory, 𝜎is 

the sigmoid function, 𝑓𝑡is the forget gate to control the forgotten information, 𝑖𝑡is the input gate to control the 

newly stored information, 𝑜𝑡is the ouput gate to control the output of the cell and ∗is the element-wise 

multiplication [5]. With this mechanism, LSTM can store and delete important information throughout the 

sequence, making it suitable for classification with sequential representation [7]. From the formula above, it can be 

seen that 𝑓𝑖and 𝑜𝑡each function at the output gate, while the input is a dimensional vector 𝑛 × 𝑑. The cell status at 

the timestep is 𝑡given by 𝑐𝑡, and the tanh function is used as the hyperbolic tangent activation . Each LSTM cell 

has a weight matrix 𝑊and 𝑈a bias variable 𝑏. The hidden layer of this LSTM network is shown in Figure 1. 

 
 

Figure 1. LSTM Network Layer [14] 

 

In Section 3, we will explain the dataset used and how to process it to build a QSAR classification model, as 

well as implement the data processing in the Python programming language. 

 

METHOD  

This study proposes a Conv1D-LSTM based QSAR pipeline for the classification of BACE1 inhibitors for 

Alzheimer's therapy with a comprehensive approach including desalting , PAINS filter, and drug-likeness analysis 

. The details of the procedures and materials used are described as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. QSAR Classification Methodology Framework 

 

Based on the QSAR classification methodology framework in Figure 2, the following section will discuss in 

detail the dataset, feature extraction methodology, and proposed classification model. 

 

BACE1 Inhibitor Data 

the Beta-Secretase 1 (BACE1) dataset , compounds that inhibit the activity of the Beta-Secretase 1 (BACE1) 

enzyme, a key enzyme in the formation of beta-amyloid plaques in the brain, which is one of the main factors 
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causing Alzheimer's disease. This dataset consists of 1,513 BACE1 inhibitor compounds [22]. Figure 3 shows a 

sample of the first 10 rows of this dataset which includes: 

• SMILES: complete chemical structure representation of a compound 

• CID: unique molecular marker (BACE_1, BACE_2, …) 

• pIC₅₀: value − log10(𝐼𝐶50(𝑀))as a measure of inhibitor activity 

• MW: molecular weight (daltons) 

• AlogP: estimated octanol–water partition coefficient 

• HBA: number of hydrogen bond accepting atoms 

• HBD: number of hydrogen bond donor atoms 

 

 
Figure 3. The first ten data of BACE ( Beta-Secretase 1 ) inhibitor compounds 

 

Data Preprocessing 

The data is processed through the Data Preprocessing stage using KNIME 5.4.0 with the workflow in Figure 

4 which includes the following steps: 

a. Basic Input and Preprocessing 

• Reading CSV files ( Read CSV File ) 

• Selecting relevant columns ( Column Filter ) 

• Delete duplicate rows ( Duplicate Row Filter ) 

• Deleting rows with missing values (Row Filter) 

b. Conversion to Molecular Structure 

• Convert SMILES text to RDKit molecule object ( RDKit From Molecule ) 

• Perform desalting to remove salt ( RDKit Salt Stripper ) 

• Re -filter the desalted rows ( Row Filter ) 

c. PAINS Filter & Drug-Likeness Analysis 

• Applying the PAINS filter ( RDKit Molecule Catalog Filter ) 

• Lipinski attributes : 

- AlogP ( Math Formula ) 

- Molecular weight ( ExactMW ) 

- Number of H-bond donors ( NumHBD ) 

- Number of H-bond acceptors ( NumHBA ) 

• Combine and aggregate parameters if necessary ( Column Aggregator ) 

• Applying Lipinski's rule of minimum 3 parameters ( Numeric Row Splitter ) 

• Creating activity labels ( active / grey / inactive ) with Rule Engine 

- active : pIC50 > 7.5 

- grey : 6 < pIC50 < 7.5 

- inactive : pIC50 < 6 

d. Finalization and Export 

• Re-filter only active and inactive labels ( Row Filter ) [17] 

• Convert labels to numeric format ( Rule Engine ) 

• Writing processed results to CSV ( CSV Writer ) 

After the Data Preprocessing step , 711 compounds were obtained, 278 active compounds and 433 inactive 

compounds, then fingerprint extraction and Conv1D-LSTM model development were carried out using Phython 

3.11.12. 
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Figure 4. Data Preprocessing Workflow with KNIME 

 

Feature Extraction 

In this study, the feature used as a molecular descriptor is a fingerprint bit-vector of length 881, which is 

calculated directly using RDKit via the GetMorganFingerprintAsBitVect function (radius 2, equivalent to ECFP4) 

on each compound SMILES [16]. The extraction process begins with reading the SMILES string into the RDKit 

Mol object, which is then converted into an 881-bit binary fingerprint and assembled into a NumPy array for each 

molecule. These fingerprint vectors are then input into the Conv1D-LSTM architecture for training and evaluating 

the QSAR classification model [9]. An illustration of the conversion of SMILES data into an 881-bit binary 

fingerprint using the GetMorganFingerprintAsBitVect function in RDKit is shown in Figure 5 [25]. 

.  

Figure 5. Molecular structure converted into fingerprint [25] 

In this case, the compound is converted to a numerical form that expresses the presence of substructures in a 

binary vector format. Figure 6 shows the fingerprint as a representation of the molecule. 

 
Figure 6. Dataset converted to AllChem fingerprints using the GetMorganFingerprintAsBitVect (radius 2, 

nBits=881) function from RDKit [16] 

 

Conv1D-LSTM Classification Model 

Research on the combination of deep learning architectures has been widely conducted. The construction of 

the Conv1D-LSTM model is carried out by placing the LSTM layer after the one-dimensional convolution 

operation (Conv1D), so that the input vector is first processed by Conv1D before being fed to the LSTM network. 

In the training and testing process, the output of Conv1D becomes the input for LSTM, where these two 

components work sequentially to capture local features and long-term dependencies in molecular data. Amalia et 
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al. [1] used a combination of convolutional neural networks and long short-term memory for the detection and 

description of diabetic retinopathy, which showed the effectiveness of similar architectures in the medical domain. 

In this study, a QSAR classification model was built using the Conv1D-LSTM framework. 

This model aims to classify active or inactive compounds in BACE1 inhibitors. The following architecture is 

designed for model building: 

 
Figure 7. Conv1D-LSTM architecture [19] 

 

Figure 7 shows the architecture of the Conv1D-LSTM model with the following stages [19]: 

a. Input Layer 

At this stage, fingerprint data is used in vector form with the size (711, 881), for example 

([1,1,…,0,0],[1,1,…,0,0],…,[1,1,…,0,0]). 

b. One Dimensional Convolutional Layer 

A one-dimensional CNN consists of several layers—a convolution layer, a pooling layer , and an output layer. 

The input to each layer is a fingerprint matrix and a two-dimensional label vector. The matrix from the input 

layer is first processed by a convolution layer, where a number of filters are applied to form a feature map . 
c. Pooling Layer 

Pooling selects the best feature map values from each most informative filter. The result is a vector whose 

length is equal to the number of filters used. This vector is then forwarded to the output layer via a fully 

connected network . 

d. LSTM Layer 

The LSTM layer takes the pooled result vector and calculates a score for each class, so that the model can 

classify compounds into active or inactive categories. 

 

Model Performance Evaluation 

In binary classification, there are four possible prediction results, True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). Model evaluation in classification problems requires a confusion 

matrix containing these four parameters. The confusion matrix is explained in Table 1 [15]. 

Table 1. Confusion Matrix 

Actual Class 
Predicted Class 

Inactive Active 

Inactive TN FP 

Active FN TP 

 

The performance measurement standards are defined in Sensitivity, Specificity, Accuracy, and MCC [3]. 

The performance of the Conv1D-LSTM model is calculated by the following equation. 

 𝐴𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 (𝑄) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
  ( 8) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝐸) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ( 9) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ( 10) 

 𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)×(𝐹𝑃+𝑇𝑁)×(𝑇𝑃+𝐹𝑃)×(𝐹𝑁+𝑇𝑁)
 ( 11) 
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In this study, the evaluation of model performance is determined based on the values of accuracy, 

sensitivity, specificity, and MCC obtained. The next section will present the results of the QSAR classification 

model built using the Conv1D-LSTM architecture. 

 

RESULTS AND DISCUSSION  

The following discussion will explain the implementation of the Conv1D-LSTM model in QSAR 

classification. In this analysis, the Conv1D-LSTM method is proposed to classify active or inactive compounds in 

BACE1 inhibitors using the Python platform. To be processed by Conv1D, the fingerprint data is converted into 

vectors—where each vector represents one fingerprint data . The setting parameters used in the Conv1D-LSTM 

model in this study are presented in Table 2. 

 

Table 2. Conv1D-LSTM Model Parameter Settings 

Parameter Mark 

ConvID filters 64 

Conv1D kernel_size 3 

Conv1D activation ReLU 

Dropout after Conv1D 0.3 

Conv1D output ( time_steps -2, 64) 

LSTM units 128 

Dropout after LSTM 0.3 

Dense (output) units 1 

Dense activation Sigmoid 

Optimizer Adam ( learning_rate = 0.001) 

Loss function Binary Crossentropy 

Batch size 32 

Epochs 100 

Validation split 0.2 

 

 Based on Table 2, the Conv1D-LSTM architecture is configured as follows: the Conv1D layer has 64 

filters with a kernel size of 3 and a ReLU activation function, followed by a dropout of 0.3 to prevent overfitting . 
The Conv1D output is then reshaped to ( time_steps −2.64) before entering the LSTM layer consisting of 128 units 

and equipped with a dropout of 0.3. The final dense layer ( output ) has 1 unit with a sigmoid activation function 

for binary classification. The model is compiled using the Adam optimizer with a learning rate of 0.001 and a 
Binary Crossentropy loss function , trained for 100 epochs with a batch size of 32 and a validation split of 0.2. 

 

Input Layer 
Input [(None, 881.1)] 

Output [(None, 881.1)] 

 

Conv1D 
Input [(None, 881.1)] 

Output [(None, 879.64)] 

 

Dropout 
Input [(None, 879.64)] 

Output [(None, 879.64)] 

 

LSTM 
Input [(None, 879.64)] 

Output [(None, 128)] 

 

Dropout 
Input [(None, 128)] 

Output [(None, 128)] 

 

Dense (Output) 
Input [(None, 128)] 

Output [(None, 2)] 
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Figure 8. Conv1D-LSTM Model Structure 

 

Based on the Conv1D-LSTM architecture parameters, the constructed classification model (Figure 7) 

receives a three-dimensional tensor input of size (None, 881, 1), then processed by the Conv1D layer—producing a 

three-dimensional output of (None, 879, 64); then a Dropout layer with a rate of 0.3 maintains the shape of (None, 

879, 64); this output is then fed to the LSTM layer which converts it into a two-dimensional vector of size 

(None,128); after that the second Dropout layer ( rate 0.3) still produces (None,128); and finally the Dense layer ( 

output ) with 2 units exports the final prediction in the shape of (None,2). 

The dataset is randomly divided into training and testing data. After the training data is used to train the 

Conv1D-LSTM model as a classification model, the model is then used to predict the testing data. The training 

process is carried out for 100 epochs , meaning the model learns from the training data 100 times iterations. 

Training and testing are repeated on three simulations with different data division proportions, namely 80:20 

(Model 1), 70:30 (Model 2), and 60:40 (Model 3). The results of the performance evaluation of the proposed 

model are presented in the following table. 

 

Table 3. Performance Evaluation of Model 1 

Simulation 
Testing Data 

Accuracy Sensitivity Specificity MCC 

1 79.72% 64.29% 89.66% 56.70% 

2 80.42% 73.21% 85.06% 58.67% 

3 75.52% 76.79% 74.71% 50.48% 

Average 78.55% 71.43% 83.14% 55.28% 

 

Table 3 shows the evaluation metrics for Model 1. Conv1D-LSTM with 80:20 data split produces an 

average accuracy of 78.55%, sensitivity of 71.43%, and specificity of 83.14%. Although the accuracy and 

specificity are quite good, the Matthews Correlation Coefficient (MCC) value is relatively lower, which is 55.28%, 

indicating that the correlation between predictions and actual labels still needs to be improved. 

 

Table 4. Performance Evaluation of Model 2 

Simulation 
Testing Data 

Accuracy Sensitivity Specificity MCC 

1 82.24% 76.62% 88.46% 62.33% 

2 72.43% 69.05% 74.62% 43.13% 

3 82.71% 77.38% 86.15% 63.67% 

Average 79.13% 73.02% 83.08% 56.38% 

 

Table 4 shows the evaluation metrics for Model 2. Conv1D-LSTM with 70:30 data split produces an 

average accuracy of 79.13%, sensitivity of 73.02%, and specificity of 83.08%. The average Matthews Correlation 
Coefficient (MCC) value is 56.38%, indicating that the correlation between predictions and actual labels has 

improved compared to Model 1 but still has room for improvement. 
 

Table 5. Performance Evaluation of Model 3 

Simulation 
Testing Data 

Accuracy Sensitivity Specificity MCC 

1 77.54% 63.96% 86.21% 51.90% 

2 76.84% 74.77% 78.16% 52.22% 

3 78.60% 78.38% 78.74% 56.18% 

Average 77.66% 72.37% 81.03% 53.43% 

 

Table 5 shows the evaluation metrics for Model 3. Conv1D-LSTM with 60:40 data split produces an average 

accuracy of 77.66%, sensitivity of 72.37%, and specificity of 81.03%. The average Matthews Correlation 

Coefficient (MCC) value is 53.43%, indicating that although the model maintains decent performance on accuracy 

and specificity, the correlation of predictions with actual labels can still be improved. 
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Table 6. Comparison of Average Performance Evaluation of 3 Models 

Model 
Testing Data 

Accuracy Sensitivity Specificity MCC 

1 78.55% 71.43% 83.14% 55.28% 

2 79.13% 73.02% 83.08% 56.38% 

3 77.66% 72.37% 81.03% 53.43% 

 

 Tables 3–5 show that different training and testing data splitting proportions affect model performance. 

Table 6 presents a comparison of the average evaluation metrics of the three Conv1D-LSTM models with different 

data splitting proportions. Model 2 (70:30) shows the best performance with 79.13% accuracy, 73.02% sensitivity, 

83.08% specificity, and the highest MCC of 56.38%. Model 1 (80:20) produces 78.55% accuracy, 71.43% 

sensitivity, 83.14% specificity, and 55.28% MCC, while Model 3 (60:40) has 77.66% accuracy, 72.37% 

sensitivity, 81.03% specificity, and 53.43% MCC. These results indicate that the 70:30 data split provides the best 

balance between positive and negative class detection and prediction correlation as shown in Figure 9. In this 

study, the Conv1D-LSTM model with a data split of 70% for training and 30% for testing showed the best 

performance. 

 

 
Figure 9. Comparison of Average Performance Evaluation of 3 Models 

 

Examples of QSAR classification output using test data are presented in Table 7. Rows 1 and 2 show the 

prediction of “ Active ” which corresponds to the actual class. Rows 3 and 4 show the prediction of “ Inactive ” 

which also corresponds to the actual class. Row 5 is a case of False Negative , where the compound is predicted to 

be “ Inactive ” when it is actually “ Active ”. Conversely, row 6 is a False Positive , where the compound is 

predicted to be “ Active ” when it is actually “ Inactive ”. 

 

Table 7. Example of QSAR Classification Output 

 

No. Enter SMILES Molecule Output 
Actual 

Class 

1 

Cc1cccccc1-

c1ccc2nc(N)c(C[C@

@H](C)C(=O)N[C@

@H]3CCOC(C)(C)C

3)cc2c1  

Active Active 

78.55% 79.13% 77.66%

71.43% 73.02% 72.37%

83.14% 83.08% 81.03%

55.28% 56.38%
53.43%
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The Conv1D-LSTM model in this study was tested for compound classification in BACE1 inhibitors using 

test data of 214 compounds, consisting of 130 compounds known to be inactive and 84 compounds known to be 

active. From the prediction results, there were 18 inactive compounds that were incorrectly classified as active ( 

False Positive ) and 19 active compounds that were incorrectly predicted as inactive ( False Negative ). This 

indicates that the proposed model only made a few classification errors. The Confusion Matrix for the third 

simulation of Model 2 with Conv1D-LSTM is shown in Figure 10. 

 

 

 
Figure 10. Confusion Matrix 
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Figure 10 is a Confusion Matrix depicting the third simulation of Model 2 with a training and testing data 

ratio of 70:30, which resulted in a classification accuracy of 82.71%. The confusion matrix shows that the model 

can correctly predict 65 active compounds ( True Positive ) and 112 inactive compounds ( True Negative ). The 

Confusion Matrix can also be used to evaluate the model with the obtained TP, FP, FN, and TN values. Therefore, 

the accuracy, sensitivity, specificity, and MCC values of this model with a training:testing data ratio of 70:30 are 

82.71%, 77.38%, 86.15%, and 63.67%, respectively. hybrid deep learning methods —for example, combining 

Conv1D with BiLSTM, attention mechanism , or transformer- based architectures —and applying Graph Neural 
Networks (GNN) to exploit the molecular structure topologically. Given the class imbalance in the dataset (278 

active compounds vs. 433 inactive compounds), data balancing techniques such as oversampling (e.g., SMOTE), 

undersampling , or cost-sensitive learning should be considered to improve the sensitivity and specificity of the 

model. In addition, hyperparameter tuning via grid search , random search , or Bayesian optimization can help 

find the optimal combination of parameters (e.g., number of filters, kernel size, learning rate , and dropout rate ) 
that maximizes accuracy and Matthews Correlation Coefficient . Furthermore, applying this approach to other 

inhibitor targets with larger datasets—e.g., DPP-4 or BACE2 enzymes with thousands of compounds—can provide 

richer training data and hopefully lead to more accurate predictions. By combining balancing , tuning , and data 

expansion strategies to targets with a larger number of compounds, QSAR classification performance can be 

further optimized. 

  

CONCLUSION 

In this study, it can be concluded that AllChem fingerprint successfully represents the molecular structure 

and can be applied to the combination of Conv1D-LSTM deep learning models. The Conv1D-LSTM model proved 

effective for QSAR classification of Beta-Secretase 1 (BACE1) inhibitor compounds, where the proportion of 

training:testing data 70:30 gave the best results with an accuracy of 86.18%, sensitivity of 77.38%, specificity of 

86.15%, and MCC of 63.67%. This best performance was achieved on inhibitors that initially numbered 1,315 

compounds, then filtered through the desalting process , PAINS filter, and drug-likeness analysis so that 711 

quality compounds remained. Thus, the implementation of Conv1D-LSTM for QSAR classification of BACE1 

inhibitors has good performance. 
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