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Abstract

In recent years, the discovery of Beta-Secretase 1 (BACEI) enzyme inhibitors for more effective Alzheimer’s
therapy has become a major focus, making in silico research to identify new inhibitors with minimal side effects
increasingly essential. Ligand-Based Virtual Screening (LBVS) using Quantitative Structure—Activity Relationship
(QSAR) methods offers a fast and cost-effective alternative to experimental assays. In this study, we propose a
Conv1D-LSTM-based QSAR model as a novel approach for classifying BACE1 enzyme inhibitors, where
Conv1D is employed for encoding molecular data and LSTM is used to classify compounds as active or inactive.
The model is complemented by drug-likeness analysis based on Lipinski's Rule of Five to evaluate the therapeutic
potential of candidate molecules. The dataset used includes 711 molecular structures, consisting of 278 active and
433 inactive compounds. Experimental results demonstrate that our model achieves a classification accuracy of
79.13%, with a sensitivity of 73.02%, specificity of 83.08%, and a Matthews Correlation Coefficient (MCC) of
56.38%.

Keywords: @SAR, ConvID-LSTM, Beta-Secretase 1, ligand-based virtual screening, drug-likeness, Lipinski’s
Rule, Alzheimer’s disease.

INTRODUCTION

In recent years, the discovery of Beta-Secretase 1 (BACE1l) enzyme inhibitors for more effective
Alzheimer’s therapy has become a primary focus. In silico research remains crucial for identifying novel inhibitors
with minimal side effects. Ligand-Based Virtual Screening (LBVS) using Quantitative Structure—Activity
Relationship (QSAR) methods offers a rapid and cost-efficient alternative to labor-intensive experimental
measurements. In this study, we propose a ConvlD-LSTM-based QSAR classification model as a novel approach
for BACE1 inhibitor prediction, where ConvlD serves to encode molecular data and LSTM is used for the
classification of compounds as active or inactive. This model is supplemented with drug-likeness analysis based on
Lipinski’s Rule of Five to ensure candidate viability as drug-like molecules. The dataset includes 711 molecular
structures—278 active and 433 inactive compounds. Experimental results show our model achieves an accuracy of
79.13%, sensitivity of 73.02%, specificity of 83.08%, and a Matthews Correlation Coefficient (MCC) of 56.38%.

The BACELI enzyme plays a key role in Alzheimer’s pathogenesis by catalyzing the cleavage of amyloid
precursor protein (APP) into P-amyloid fragments, which aggregate and form plaques in the brain, thereby
disrupting synaptic function and causing progressive neurodegeneration [23]. The development of BACEI1
inhibitors aims to reduce P-amyloid accumulation and slow disease progression; however, the primary challenge
lies in designing molecules that are not only potent but also possess adequate safety and pharmacokinetic profiles
[23]. Due to the high cost and time demands of in vitro and in vivo biological testing, in silico methods have
emerged as strategic alternatives for accelerating compound screening and reducing the risk of downstream
development failures [10].

LBVS has gained prominence in modern drug discovery for its ability to efficiently explore large
molecular libraries without requiring a complete 3D structure of the target protein [10]. One of the most widely
used LBVS techniques is QSAR, which employs molecular descriptors—such as fingerprints, topology, and
physicochemical properties—to construct statistical or machine learning models that map the quantitative
relationship between chemical structure and biological activity [8]. With QSAR, researchers can prioritize
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compounds with high probability of activity, thus reducing experimental workload and expediting drug discovery
[8].

Despite its efficiency, QSAR modeling can be compromised by noisy molecular data, including salt
contaminants and PAINS (Pan Assay INterference compoundS), which can lead to false positives during virtual
screening [21]. Desalting is used to remove irrelevant salt components from molecular structures, while PAINS
filters eliminate compounds known to cause assay interference [21]. Cleaning the dataset of such artifacts enables
the construction of QSAR models on a more representative and robust data foundation, thereby improving
predictive performance [21]. Beyond data curation, drug-likeness analysis based on Lipinski’s Rule of Five is
crucial to ensure that BACE1 inhibitor candidates are not only biologically active but also possess favorable
pharmacokinetic characteristics—such as molecular weight, lipophilicity (log P), and the number of hydrogen
bond donors/acceptors—making them promising drug candidates [13]. This analysis helps select molecules with
potential for adequate bioavailability, metabolic stability, and minimal toxicity, thereby reducing the risk of
clinical development failure [13].

Deep learning techniques, particularly the combination of one-dimensional Convolutional Neural
Networks (Conv1D) and Long Short-Term Memory (LSTM), have shown remarkable performance in extracting
complex features from sequential and structural data [18]. ConvlD is effective for capturing local patterns in
molecular representations such as PubChem fingerprints or SMILES one-hot encoding, while LSTM is capable of
modeling long-range dependencies between features [12]. The ConvlD-LSTM architecture combines the strengths
of both approaches, where ConvlD generates compact and meaningful feature representations and LSTM
processes these sequences for final classification, thereby potentially outperforming conventional QSAR models
[18], [12]. Given these preprocessing challenges and the potential of deep learning architecture, this study proposes
a comprehensive QSAR pipeline for BACE1 inhibitor classification, encompassing desalting, PAINS filtering, and
Lipinski-based drug-likeness analysis, followed by a ConvlD-LSTM model for active/inactive compound
prediction. The dataset includes 711 labeled molecular structures, and model performance will be evaluated using
metrics such as accuracy, sensitivity, specificity, and Matthews Correlation Coefficient (MCC) [8], [13]. The
following sections will detail the preprocessing methodology, model architecture, and evaluation protocols.

THEORETICAL BACKGROUND
1 Beta-Secretase 1 (BACEL1) Inhibitors

BACEI] inhibitors are a class of compounds designed to inhibit the activity of Beta-Secretase 1, a key
enzyme in the formation of f-amyloid plaques in Alzheimer’s disease [2]. BACE] is expressed on the surface of
most neuronal cells and cleaves amyloid precursor protein (APP) into a C99 fragment, which is subsequently
processed into f-amyloid by y-secretase [2]. By inhibiting BACE1, the accumulation of B-amyloid can be reduced,
potentially slowing neurodegeneration and cognitive decline in Alzheimer’s patients [20].

2 One-Dimensional Convolutional Neural Network (Conv1D)

One-dimensional Convolutional Neural Networks (ConvlD) are a variant of traditional 2D CNNs,
designed to process sequential or one-dimensional vector data, such as molecular fingerprints or SMILES one-hot
encodings [11]. Conv1D applies convolutional kernels along a single dimension of input to extract local patterns;
each convolutional layer follows operations.

y® = ReLU(w® * =1 + p1)) (1)

where x{Dis the input layer , w®convolution lkernel, b®bias, and ReLU is a linear activation function
truncated at zero [6]. After feature extraction, pooling—such as average pooling —is used to reduce the
dimensionality and extract the most informative information from each feature map [24].

Long Short-Term Memory (LSTM)

Long Short-Term Memory is a type of Recurrent Neural Network (RNN) designed to capture long-term
dependencies in sequential data by using a memory cell structure and three main gates: input gate , forget gate ,
and output gate [4]. The basic operations on each LSTM cell are formulated as follows:

fe = U(Wf [he—1,x] + bf) (2)
i = oW, [he—1,%¢] + by) 3
Ce = tanh(W¢ - [he—q, x] + b¢) 4)
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Co=fr*Coq+ir*C (5)
or = oW, - [he_q,x¢] + by) (6)
hy = o; * tanh((;) @)

where x;is the input sequence at time t, h;_is the previous hidden C;_qstate, is the previous memory, gis
the sigmoid function, f;is the forget gate to control the forgotten information, i;is the input gate to control the
newly stored information, o;is the ouput gate to control the output of the cell and xis the element-wise
multiplication [5]. With this mechanism, LSTM can store and delete important information throughout the
sequence, making it suitable for classification with sequential representation [7]. From the formula above, it can be
seen that f;and o;each function at the output gate, while the input is a dimensional vector n X d. The cell status at
the timestep is tgiven by c;, and the tanh function is used as the hyperbolic tangent activation . Each LSTM cell
has a weight matrix Wand Ua bias variable b. The hidden layer of this LSTM network is shown in Figure 1.
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Figure 1. LSTM Network Layer [14]

In Section 3, we will explain the dataset used and how to process it to build a QSAR classification model, as
well as implement the data processing in the Python programming language.

METHOD

This study proposes a Conv1D-LSTM based QSAR pipeline for the classification of BACEI inhibitors for
Alzheimer's therapy with a comprehensive approach including desalting , PAINS filter, and drug-likeness analysis
. The details of the procedures and materials used are described as follows:

BACE1 Inhibitor Preprocessing Data
Data

Fitur Extraction

Classification Model
Conv1D-LSTM

Model Performance
Evaluation

Figure 2. QSAR Classification Methodology Framework

Based on the QSAR classification methodology framework in Figure 2, the following section will discuss in
detail the dataset, feature extraction methodology, and proposed classification model.

BACETI Inhibitor Data
the Beta-Secretase 1 (BACEI) dataset , compounds that inhibit the activity of the Beta-Secretase 1 (BACEI)
enzyme, a key enzyme in the formation of beta-amyloid plaques in the brain, which is one of the main factors
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causing Alzheimer's disease. This dataset consists of 1,513 BACE! inhibitor compounds [22]. Figure 3 shows a
sample of the first 10 rows of this dataset which includes:

SMILES: complete chemical structure representation of a compound

CID: unique molecular marker (BACE 1, BACE 2, ...)

pICso: value —log,o(ICso(M))as a measure of inhibitor activity

MW: molecular weight (daltons)

AlogP: estimated octanol-water partition coefficient

HBA: number of hydrogen bond accepting atoms

HBD: number of hydrogen bond donor atoms

Row ID [S] mal [§]c [D]prcsn  |[D] twe [D] Alogr [1]Hea [1]HeD
Row0 O CC[C@@HNCG =0 [C@@H] e ocdoniooonc2M-c2occcc 2 CWII L0 |BACE L 9,155 431,57 4,401 3 2
Rowl Felec{ccfF)ec 1 )C[CRH]INC(=0 [ C@@HIMI CO[C@TNC=0)CN CC(C)C)C. .. [BACE_2 3.854 57,511 Z.641 3 4
Rowz % (=00 =M c2 o0 ce3e2nf e ECCHCC1IC=0IN[C@H]([C@H]( O)C[NHZ+]. .. [BACE_3 3.699 591.741 7,55 4 3
Row3 51{=0l{=ChC[C@@H] Cczec{O[C@H COCTICFIFIF NP icz [ CaH). .. [BACE_4 5,609 591,675 3.168 4 3
Rowd S =00 =002 oo ce3e2nfcc 30T T =0N[ C@H] [ C@H] O [NH24]. .. |[BACE_5 5,699 629,713 3,509 3 3
Rows = (=0 [C@@H](Cc2ee{OC( CIFNFIRIC PP M)F)c2) [CRHO)C@. .. [BACE 6 3.609 585.508 3,861 z 3
Rowe S(=0)(=0)(CCCCOC[C@@H]INCI=0)c1orene E(=CIN[C@HI[C@HII0). .. [BACE_7 3.699 £45.78 3.197 s 4
Row? Friczo{oec [ @@ i H+]=C2n ) C=1C=ClCc (=0 C=13")cloc{cecl . |BACE_& G613 477,552 371 2 0
Rowd Ol c2ofcc{oc2) SO C@@HNH2+ [ Ca@b o) C@H]2NC{=0)C=3C=C.., |BACE_2 §.602 556,715 4.701 4 3
Rawg O=C1N{CCCC OO CR@H C[C@@H]ICOC 1 )C(=0N[C@H][C@H. .. [BACE_10 3,602 562,806 4,398 3 3
Rowll Fe1ce{cc(Fic 1 )o[C@HNC =0)c L cofoe(c 110 =0)N(CoC)CCOCaH](o). . [BACE_11 5.523 594,712 4.45 4 3

Figure 3. The first ten data of BACE ( Beta-Secretase 1) inhibitor compounds

Data Preprocessing
The data is processed through the Data Preprocessing stage using KNIME 5.4.0 with the workflow in Figure
4 which includes the following steps:
a. Basic Input and Preprocessing
e Reading CSV files ( Read CSV File)
o Selecting relevant columns ( Column Filter )
o Delete duplicate rows ( Duplicate Row Filter )
e Deleting rows with missing values (Row Filter)
b. Conversion to Molecular Structure
e Convert SMILES text to RDKit molecule object ( RDKit From Molecule )
o Perform desalting to remove salt ( RDKit Salt Stripper )
e Re -filter the desalted rows ( Row Filter)
c. PAINS Filter & Drug-Likeness Analysis
e Applying the PAINS filter ( RDKit Molecule Catalog Filter)
e Lipinski attributes :
- AlogP ( Math Formula )
- Molecular weight ( ExactMW )
- Number of H-bond donors ( NumHBD )
- Number of H-bond acceptors ( NumHBA )
Combine and aggregate parameters if necessary ( Column Aggregator )
Applying Lipinski's rule of minimum 3 parameters ( Numeric Row Splitter )
Creating activity labels ( active / grey / inactive ) with Rule Engine
- active : pIC50 > 7.5
- grey:6<plC50<7.5
- inactive : pIC50 < 6
d. Finalization and Export
o Re-filter only active and inactive labels ( Row Filter ) [17]
e Convert labels to numeric format ( Rule Engine )
o Writing processed results to CSV ( CSV Writer )
After the Data Preprocessing step , 711 compounds were obtained, 278 active compounds and 433 inactive

compounds, then fingerprint extraction and ConvlD-LSTM model development were carried out using Phython
3.11.12.
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Figure 4. Data Preprocessing Workflow with KNIME

Feature Extraction
In this study, the feature used as a molecular descriptor is a fingerprint bit-vector of length 881, which is
calculated directly using RDKit via the GetMorganFingerprintAsBitVect function (radius 2, equivalent to ECFP4)
on each compound SMILES [16]. The extraction process begins with reading the SMILES string into the RDKit
Mol object, which is then converted into an 881-bit binary fingerprint and assembled into a NumPy array for each
molecule. These fingerprint vectors are then input into the Conv1D-LSTM architecture for training and evaluating
the QSAR classification model [9]. An illustration of the conversion of SMILES data into an 881-bit binary
fingerprint using the GetMorganFingerprintAsBitVect function in RDKit is shown in Figure 5 [25].
smiles mw ROMol MILCs morgan
\(‘3
0 i
0
o

e,

o CC{=0)O0{CC=0)[0-JICIN+JICHCIC  203.24 f "~ [000000000000000. [10000000001000,.

Figure 5. Molecular structure converted into fingerprint [25]
In this case, the compound is converted to a numerical form that expresses the presence of substructures in a
binary vector format. Figure 6 shows the fingerprint as a representation of the molecule.

mol cID fp Class
0 O1CCIC@@H]NC=0)[C@@H](Cre2ecdco(ceeanc2i)-c2c... BACE 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, ... 1
1 S1(=0)=0jN({c2ce(ce3e2n(ce3CCICCC(=0NC@H]( .. BACE_3 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, . 1
2 S1(=0)(=0)C[C@@H)(Cc2ce{O[C@H]{COCC)C(F)(FIF)e... BACE_4 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ... 1
3 S1(=0)C[C@@H](Ce2ec(OC(C(F)(FIFIC(FI(FIFIc(NIc. . BACE_6 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, . 1
4  Folc2e(cce)[C@R@)[NH+=C2N)C=1C=C(C)C(=0)N(C. . BACE_B [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 1

Figure 6. Dataset converted to AllChem fingerprints using the GetMorganFingerprintAsBitVect (radlus 2,
nBits=881) function from RDKit [16]

ConvlD-LSTM Classification Model

Research on the combination of deep learning architectures has been widely conducted. The construction of
the ConvID-LSTM model is carried out by placing the LSTM layer after the one-dimensional convolution
operation (Conv1D), so that the input vector is first processed by Conv1D before being fed to the LSTM network.
In the training and testing process, the output of ConvlD becomes the input for LSTM, where these two
components work sequentially to capture local features and long-term dependencies in molecular data. Amalia et
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al. [1] used a combination of convolutional neural networks and long short-term memory for the detection and
description of diabetic retinopathy, which showed the effectiveness of similar architectures in the medical domain.
In this study, a QSAR classification model was built using the ConvID-LSTM framework.

This model aims to classify active or inactive compounds in BACE]1 inhibitors. The following architecture is
designed for model building:

Input Data

[}
|
|
|
|
|
|
|
|
|
|

~H-

i -

Dense (softmax)

A
1
g
o)
g
-
o
i >
g
0
9

Figure 7. Convl1D-LSTM architecture [19]

Figure 7 shows the architecture of the Conv1D-LSTM model with the following stages [19]:

a. Input Layer
At this stage, fingerprint data is used in vector form with the size (711, 881), for example
([L,1,...,0,0],[L,1,...,0,0],...,[1,1,...,0,0]).

b. One Dimensional Convolutional Layer
A one-dimensional CNN consists of several layers—a convolution layer, a pooling layer , and an output layer.
The input to each layer is a fingerprint matrix and a two-dimensional label vector. The matrix from the input
layer is first processed by a convolution layer, where a number of filters are applied to form a feature map .

c. Pooling Layer
Pooling selects the best feature map values from each most informative filter. The result is a vector whose
length is equal to the number of filters used. This vector is then forwarded to the output layer via a fully
connected network .

d. LSTM Layer
The LSTM layer takes the pooled result vector and calculates a score for each class, so that the model can
classify compounds into active or inactive categories.

Model Performance Evaluation
In binary classification, there are four possible prediction results, True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). Model evaluation in classification problems requires a confusion
matrix containing these four parameters. The confusion matrix is explained in Table 1 [15].
Table 1. Confusion Matrix

Actual Class ]')”ed’“ed Class .
Inactive Active

Inactive ™ FP

Active FN TP

The performance measurement standards are defined in Sensitivity, Specificity, Accuracy, and MCC [3].

The performance of the Conv1D-LSTM model is calculated by the following equation.
TP+TN

Accurracy (Q) = TPIFNTTNTEP (8)
Sensitivity (SE) = —— (9)
Specificity(SP) = T;ivFP (10)

(TPXTN)—(FPXFN)

MCC =
J(TP+FN)X(FP+TN)X(TP+FP)x(FN+TN)

(1D
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In this study, the evaluation of model performance is determined based on the values of accuracy,
sensitivity, specificity, and MCC obtained. The next section will present the results of the QSAR classification
model built using the Conv1D-LSTM architecture.

RESULTS AND DISCUSSION

The following discussion will explain the implementation of the ConvlD-LSTM model in QSAR
classification. In this analysis, the Conv1D-LSTM method is proposed to classify active or inactive compounds in
BACEI inhibitors using the Python platform. To be processed by ConvlD, the fingerprint data is converted into
vectors—where each vector represents one fingerprint data . The setting parameters used in the ConvlD-LSTM
model in this study are presented in Table 2.

Table 2. ConvlD-LSTM Model Parameter Settings

Parameter Mark

ConvlD filters 64

ConvlD kernel size 3

Conv1D activation ReLU

Dropout after Conv1D 0.3

Conv1D output ( time_steps -2, 64)
LSTM units 128

Dropout after LSTM 0.3

Dense (output) units 1

Dense activation Sigmoid

Optimizer Adam ( learning rate = 0.001)
Loss function Binary Crossentropy
Batch size 32

Epochs 100

Validation split 0.2

Based on Table 2, the ConvlD-LSTM architecture is configured as follows: the ConvlD layer has 64
filters with a kernel size of 3 and a ReLU activation function, followed by a dropout of 0.3 to prevent overfitting .
The Conv1D output is then reshaped to ( time steps —2.64) before entering the LSTM layer consisting of 128 units
and equipped with a dropout of 0.3. The final dense layer ( output ) has 1 unit with a sigmoid activation function
for binary classification. The model is compiled using the Adam optimizer with a learning rate of 0.001 and a
Binary Crossentropy loss function , trained for 100 epochs with a batch size of 32 and a validation split of 0.2.

topus Layer | It [(None, SEL.1)
ConvlD Ohllllt);tlt [E%\Ioolii’88789l..61‘3)]]
Dropous |10t [(None, $75.61)
Lstv [ Lot [(None,679.64)
Dropout (;rlllfllllit &Egﬁzz Bg%

Input | [(None, 128)]
Output [(None, 2)]

Dense (Output)
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Figure 8. Conv1D-LSTM Model Structure

Based on the ConvlD-LSTM architecture parameters, the constructed classification model (Figure 7)
receives a three-dimensional fensor input of size (None, 881, 1), then processed by the ConvID layer—producing a
three-dimensional output of (None, 879, 64); then a Dropout layer with a rate of 0.3 maintains the shape of (None,
879, 64); this output is then fed to the LSTM layer which converts it into a two-dimensional vector of size
(None,128); after that the second Dropout layer ( rate 0.3) still produces (None,128); and finally the Dense layer (
output ) with 2 units exports the final prediction in the shape of (None,2).

The dataset is randomly divided into training and testing data. After the training data is used to train the
Conv1D-LSTM model as a classification model, the model is then used to predict the testing data. The training
process is carried out for 100 epochs , meaning the model learns from the training data 100 times iterations.
Training and testing are repeated on three simulations with different data division proportions, namely 80:20
(Model 1), 70:30 (Model 2), and 60:40 (Model 3). The results of the performance evaluation of the proposed
model are presented in the following table.

Table 3. Performance Evaluation of Model 1

Simulation Testing Data
Accuracy Sensitivity | Specificity Mcc
1 79.72% 64.29% 89.66% 56.70%
2 80.42% 73.21% 85.06% 58.67%
3 75.52% 76.79% 74.71% 50.48%
Average 78.55% 71.43% 83.14% 55.28%

Table 3 shows the evaluation metrics for Model 1. ConvlD-LSTM with 80:20 data split produces an
average accuracy of 78.55%, sensitivity of 71.43%, and specificity of 83.14%. Although the accuracy and
specificity are quite good, the Matthews Correlation Coefficient (MCC) value is relatively lower, which is 55.28%,
indicating that the correlation between predictions and actual labels still needs to be improved.

Table 4. Performance Evaluation of Model 2

Simulation Testing Data
Accuracy Sensitivity | Specificity MCC
1 82.24% 76.62% 88.46% 62.33%
2 72.43% 69.05% 74.62% 43.13%
3 82.71% 77.38% 86.15% 63.67%
Average 79.13% 73.02% 83.08% 56.38%

Table 4 shows the evaluation metrics for Model 2. Conv1D-LSTM with 70:30 data split produces an
average accuracy of 79.13%, sensitivity of 73.02%, and specificity of 83.08%. The average Matthews Correlation
Coefficient (MCC) value is 56.38%, indicating that the correlation between predictions and actual labels has
improved compared to Model 1 but still has room for improvement.

Table 5. Performance Evaluation of Model 3

Simulation Testing Data
Accuracy Sensitivity | Specificity MCC
1 77.54% 63.96% 86.21% 51.90%
2 76.84% 74.77% 78.16% 52.22%
3 78.60% 78.38% 78.74% 56.18%
Average 77.66% 72.37% 81.03% 53.43%

Table 5 shows the evaluation metrics for Model 3. ConvlD-LSTM with 60:40 data split produces an average
accuracy of 77.66%, sensitivity of 72.37%, and specificity of 81.03%. The average Matthews Correlation
Coefficient (MCC) value is 53.43%, indicating that although the model maintains decent performance on accuracy
and specificity, the correlation of predictions with actual labels can still be improved.
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Table 6. Comparison of Average Performance Evaluation of 3 Models

Model Testing Data
Accuracy Sensitivity | Specificity MCC
1 78.55% 71.43% 83.14% 55.28%
79.13% 73.02% 83.08% 56.38%
3 77.66% 72.37% 81.03% 53.43%

Tables 3—5 show that different training and testing data splitting proportions affect model performance.
Table 6 presents a comparison of the average evaluation metrics of the three Conv1D-LSTM models with different
data splitting proportions. Model 2 (70:30) shows the best performance with 79.13% accuracy, 73.02% sensitivity,
83.08% specificity, and the highest MCC of 56.38%. Model 1 (80:20) produces 78.55% accuracy, 71.43%
sensitivity, 83.14% specificity, and 55.28% MCC, while Model 3 (60:40) has 77.66% accuracy, 72.37%
sensitivity, 81.03% specificity, and 53.43% MCC. These results indicate that the 70:30 data split provides the best
balance between positive and negative class detection and prediction correlation as shown in Figure 9. In this
study, the ConvlD-LSTM model with a data split of 70% for training and 30% for testing showed the best
performance.

Comparison of Average Performance Evaluation of 3 Models
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Figure 9. Comparison of Average Performance Evaluation of 3 Models
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Examples of QSAR classification output using test data are presented in Table 7. Rows 1 and 2 show the
prediction of ““ Active ” which corresponds to the actual class. Rows 3 and 4 show the prediction of “ Inactive ”
which also corresponds to the actual class. Row 5 is a case of False Negative , where the compound is predicted to
be “ Inactive ” when it is actually “ Active ”. Conversely, row 6 is a False Positive , where the compound is
predicted to be “ Active ” when it is actually * Inactive ™.

Table 7. Example of QSAR Classification Output
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The ConvlD-LSTM model in this study was tested for compound classification in BACE1 inhibitors using
test data of 214 compounds, consisting of 130 compounds known to be inactive and 84 compounds known to be
active. From the prediction results, there were 18 inactive compounds that were incorrectly classified as active (
False Positive ) and 19 active compounds that were incorrectly predicted as inactive ( False Negative ). This
indicates that the proposed model only made a few classification errors. The Confusion Matrix for the third
simulation of Model 2 with Conv1D-LSTM is shown in Figure 10.
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Figure 10 is a Confusion Matrix depicting the third simulation of Model 2 with a training and testing data
ratio of 70:30, which resulted in a classification accuracy of 82.71%. The confusion matrix shows that the model
can correctly predict 65 active compounds ( True Positive ) and 112 inactive compounds ( True Negative ). The
Confusion Matrix can also be used to evaluate the model with the obtained TP, FP, FN, and TN values. Therefore,
the accuracy, sensitivity, specificity, and MCC values of this model with a training:testing data ratio of 70:30 are
82.71%, 77.38%, 86.15%, and 63.67%, respectively. hybrid deep learning methods —for example, combining
Conv1D with BiLSTM, attention mechanism , or transformer- based architectures —and applying Graph Neural
Networks (GNN) to exploit the molecular structure topologically. Given the class imbalance in the dataset (278
active compounds vs. 433 inactive compounds), data balancing techniques such as oversampling (e.g., SMOTE),
undersampling , or cost-sensitive learning should be considered to improve the sensitivity and specificity of the
model. In addition, hyperparameter tuning via grid search , random search , or Bayesian optimization can help
find the optimal combination of parameters (e.g., number of filters, kernel size, learning rate , and dropout rate )
that maximizes accuracy and Matthews Correlation Coefficient . Furthermore, applying this approach to other
inhibitor targets with larger datasets—e.g., DPP-4 or BACE2 enzymes with thousands of compounds—can provide
richer training data and hopefully lead to more accurate predictions. By combining balancing , tuning , and data
expansion strategies to targets with a larger number of compounds, QSAR classification performance can be
further optimized.

CONCLUSION

In this study, it can be concluded that AllChem fingerprint successfully represents the molecular structure
and can be applied to the combination of ConvlD-LSTM deep learning models. The Conv1D-LSTM model proved
effective for QSAR classification of Beta-Secretase 1 (BACEI1) inhibitor compounds, where the proportion of
training:testing data 70:30 gave the best results with an accuracy of 86.18%, sensitivity of 77.38%, specificity of
86.15%, and MCC of 63.67%. This best performance was achieved on inhibitors that initially numbered 1,315
compounds, then filtered through the desalting process , PAINS filter, and drug-likeness analysis so that 711
quality compounds remained. Thus, the implementation of ConvID-LSTM for QSAR classification of BACEI
inhibitors has good performance.
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