MALONDIALDEHIDE (MDA) URINE AS AN EARLY MARKER OF DEVELOPMENTAL DISORDERS OF CHILDREN LIVING AROUND GOLD MINES
Main Article Content
Ernawati
Adi Heru Sutomo
Indwiani Astuti
Enda Silvia Putri
Marniati
Itza Mulyani
Sufyan Anwar
Eva Flourentina Kusumawardani
Suci Eka Putri
Hasanuddin Husin
Children born to mothers living around gold mines are at risk of mercury exposure (Hg) and can cause developmental disorders. These developmental disorders can be detected early through stress oxidation mechanisms based on Hg toxicity that directly harm brain cells. It can be detected early on from the level of DNA damage, which is malondialdehyde (MDA) in the urine. Examining children's MDA urine levels near gold mines is the aim of this study. The Observational Research Method performs measurement of MDA of baby urine with TBARS examination of 16 babies in the age range of 2-14 weeks babies who live around the gold mining village Kalirejo Prefecture Kokap district of Kulon Progo Yogyakarta. The result was a rate of 3.23 μmol/L of MDA in baby urine, which is above the normal level of 1.03 μMol/L. So it can be concluded that the high level of MDI in the baby's urine is an early indication of a child's developmental disorder living around the gold mining.
Al-saleh, I., Elkhatib, R., Al-rouqi, R., Abduljabbar, M., Eltabache, C., Al-rajudi, T., & Nester, M. (2016). Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant’s neurodevelopment. International Journal of Hygiene and Environmental Health. https://doi.org/10.1016/j.ijheh.2016.07.002
Belletti, S., Orlandini, G., Vettori, M.V., Mutti, A., Uggeri, J., Scandroglio, R., Alinovi,R., Gatti, R., 2002. Time course assessment of methylmercury effects on C6glioma cells: sub micromolar concentrations induce oxidative DNA damage and apoptosis. Neuroscience Research. 70, 703–711
Cope.WG.et.al. (2004). A texbook of Modern Toxicology : Exposure Classes, Toxicants in Air, Water, Soil, Domestic and Occupational Settings (Ernest Hodgso (ed.); III).
Crespo-López, M. E., Macêdo, G. L., Pereira, S. I. D., Arrifano, G. P. F., Picanço-Diniz, D. L. W., Nascimento, J. L. M. d., & Herculano, A. M. (2009). Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacological Research, 60(4), 212–220. https://doi.org/10.1016/j.phrs.2009.02.011
Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316–328. https://doi.org/10.1016/j.numecd.2005.05.003
Gandhi, S., & Abramov, A. Y. (2012). Mechanism of Oxidative Stress in Neurodegeneration. 2012. https://doi.org/10.1155/2012/428010
Farina, M., Aschner, M., Rocha, J.B., 2011. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256, 405–417
Houston, M. C. (2011). Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. Journal of Clinical Hypertension, 13(8), 621–627. https://doi.org/10.1111/j.1751-7176.2011.00489.x
Huang, C. F., Hsu, C. J., Liu, S. H., & Lin-Shiau, S. Y. (2008). Ototoxicity induced by cinnabar (a naturally occurring HgS) in mice through oxidative stress and down-regulated Na+/K+-ATPase activities. NeuroToxicology, 29(3), 386–396. https://doi.org/10.1016/j.neuro.2008.01.005
Huang, C. F., Liu, S. H., Hsu, C. J., & Lin-Shiau, S. Y. (2011). Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicology Letters, 201(3), 196–204. https://doi.org/10.1016/j.toxlet.2010.12.016
J., S., T., S., D., W., & M., V. (2002). In harm’s way: Toxic threats to child development. Journal of Developmental and Behavioral Pediatrics, 23(1), S13–S22. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=34211233
La Maestra, S., Kisby, G. E., Micale, R. T., Johnson, J., Kow, Y. W., Bao, G., Sheppard, C., Stanfield, S., Tran, H., Woltjer, R. L., D’agostini, F., Steele, V. E., & De flora, S. (2011). Cigarette smoke induces DNA damage and alters base-excision repair and tau levels in the brain of neonatal mice. Toxicological Sciences, 123(2), 471–479. https://doi.org/10.1093/toxsci/kfr187
Li, F., Yang, Z., Lu, Y., Wei, Y., Wang, J., Yin, D., & He, R. (2010). Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta. PLoS ONE, 5(12). https://doi.org/10.1371/journal.pone.0015325
Palar H.,2008. Pencemaran dan toksikologi logam berat. Jakarta : Rineka Cipta.
Perrone, R. (n.d.). Evaluation of the Development and Follow-up of The Preterm Baby. 1–16.
Rahardjani, K. B. (2016). Hubungan antara Malondialdehyde (MDA) dengan Hasil Luaran Sepsis Neonatorum. Sari Pediatri, 12(2), 82. https://doi.org/10.14238/sp12.2.2010.82-7
Restuningwiyani, S., Sujuti, H., Rahayu, M., & Subandiyah, K. (2018). Correlation of Malondialdehyde (MDA) and C-reactive Protein (CRP) Level to Neurodevelopmental Outcome in Children After the Episode of Convulsive Type Status Epilepticus. Journal of Tropical Life Science, 8(3), 251–258. https://doi.org/10.11594/jtls.08.03.07
Risher, J. F., & De Rosa, C. T. (2007). Inorganic: The Other Mercury. Journal of Environmental Health, 70(4), 9–16. http://www.jstor.org/stable/26327505
Shoji, H., Ikeda, N., Hosozawa, M., Ohkawa, N., Matsunaga, N., Suganuma, H., & Hisata, K. (2014). Oxidative stress early in infancy and neurodevelopmental outcome in very low-birthweight infants. November 2009, 709–713. https://doi.org/10.1111/ped.12332
Stringari, J., Nunes, A. K. C., Franco, J. L., Bohrer, D., Garcia, S. C., Dafre, A. L., Milatovic, D., Souza, D. O., Rocha, J. B. T., Aschner, M., & Farina, M. (2008). Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 227(1), 147–154. https://doi.org/10.1016/j.taap.2007.10.010
Waldbaum, S., Liang, L. P., & Patel, M. (2010). Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. Journal of Neurochemistry, 115(5), 1172–1182. https://doi.org/10.1111/j.1471-4159.2010.07013.x
World Health Organization (WHO). 2007. Exposure to Mercury: A Major Public Health Concern. Available at: http://www.who.int/ipcs/ features/mercury. pdf
Zhao, W., Cheng, J., Gu, J., Liu, Y., Fujimura, M., & Wang, W. (2014). Assessment of neurotoxic effects and brain region distribution in rat offspring prenatally co-exposed to low doses of BDE-99 and methylmercury. Chemosphere, 112, 170–176. https://doi.org/10.1016/j.chemosphere.2014.04.011
Ziech, D., Franco, R., Georgakilas, A. G., Georgakila, S., Malamou-Mitsi, V., Schoneveld, O., Pappa, A., & Panayiotidis, M. I. (2010). The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chemico-Biological Interactions, 188(2), 334–339. https://doi.org/10.1016/j.cbi.2010.07.010