A MODERN APPROACH TO THE ACCURACY OF MATHEMATICAL PROBLEM-SOLVING ABILITY ASSESSMENT: GENERALIZED PARTIAL CREDIT MODEL
Main Article Content
Aditya Prayogi
Mujahidawati
Ilham Falani
Abstract
This study aims to measure students' mathematical problem-solving ability using the Item Response Theory (IRT) approach with the Generalized Partial Credit Model (GPCM). The research was carried out in North Bahar District, Muaro Jambi Regency, by involving all grade IX junior high school students in the even semester of the 2024/2025 school year as a sample through total sampling techniques. The test instruments were compiled and analyzed based on five main stages, including testing, scoring, and data processing and analysis using PARSCALE 4.1 software. The results of the analysis showed that the instruments used met the assumption of unidimensionality, which at the same time indicated the fulfillment of the assumption of local independence and parameter invariance. The model fit test produces a value indicating that the GPCM model matches the empirical data. Student ability estimates show a distribution that is close to normal, with most students being at moderate to slightly below average ability levels. The parameters of the question items showed high differentiating power and moderate difficulty, while the test information function showed the effectiveness of the instrument in measuring students' ability at average ability. In conclusion, the GPCM model is effectively used in measuring students' mathematical problem-solving abilities validly, accurately, and thoroughly.
REFERENCES
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists multivariate. London, UK: Erlbaum Publishers.
Falani, I., Akbar, M., & Naga, D. S. (2020). The Precision of Students’ Ability Estimation on Combinations of Item Response Theory Models. International Journal of Instruction, 13(4), 545–558.
Falani, I., Nisraeni, N., & Irdiyansyah, I. (2017). The ability of estimation stability and item parameter characteristics reviewed by Item Response Theory model. International Conference on Education in Muslim Society (ICEMS 2017), 175–178.
Frey, F. (2020). Test Theory and Classical Test Theory. The International Encyclopedia of Media Psychology, 1–6. https://doi.org/10.1002/9781119011071.iemp0047
Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory (Vol. 2). Sage.
Hayat, B. (2021). Klasika: Program Analisis Item dan Tes dengan Pendekatan Klasik. Jurnal Pengukuran Psikologi Dan Pendidikan Indonesia, 10(1), 1–11. https://doi.org/10.15408/jp3i.v10i1.20551
Kim, J., & Wilson, M. (2020). Polytomous item explanatory IRT models with random item effects: Concepts and an application. Measurement, 151, 107062.
Kou, G., Yüksel, S., & Dinçer, H. (2022). Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects. Applied Energy, 311, 118680.
Nisrina, D., Simatupang, G. M., & Mujahidawati, D. (2021). Pengaruh Model Problem Solving dalam Pembelajaran Jarak Jauh terhadap Kemampuan Pemecahan Masalah Matematis Siswa pada Materi Pola Bilangan di Kelas VIII MTs Negeri 5 Kota Jambi. Universitas Jambi.
Prastiwi, Y. E. N., Al Barru, A. A., & Hidayatullah, A. S. (2023). Penilaian Dan Pengukuran Hasil Belajar Pada Peserta Didik Berbasis Analisis Psikologi. Bersatu: Jurnal Pendidikan Bhinneka Tunggal Ika, 1(4), 218–231.
Retnawati, H., Hadi, S., & Nugraha, A. C. (2016). Vocational High School Teachers’ Difficulties in Implementing the Assessment in Curriculum 2013 in Yogyakarta Province of Indonesia. International Journal of Instruction, 9(1), 33–48.
Sarea, M. S., & Ruslan, R. (2019). KARAKTERISTIK BUTIR SOAL: CLASSICAL TEST THEORY VS ITEM RESPONSE THEORY? Didaktika: Jurnal Kependidikan, 13(1), 1–16.
Satria, M. R. (2024). Transformasi Standar Penilaian Pendidikan Dan Revitalisasi Penilaian Pembelajaran Di Indonesia. Jurnal Penelitian Kebijakan Pendidikan, 17(1), 57–66. https://doi.org/10.24832/jpkp.v17i1.930
Sumintono, B., & Widhiarso, W. (2014). Aplikasi model Rasch untuk penelitian ilmu-ilmu sosial (edisi revisi). Trim Komunikata Publishing House.
Zainal, N. F. (2020). Pengukuran, Assessment dan Evaluasi dalam Pembelajaran Matematika. Laplace : Jurnal Pendidikan Matematika, 3(1), 8–26. https://doi.org/10.31537/laplace.v3i1.310