ADVANCING AUDIT QUALITY THROUGH EMERGING TECHNOLOGIES: EXPLORING OPPORTUNITIES AND OVERCOMING CHALLENGES

Authors

Jesica Ramadanty , Hasni Yusrianti , Yulia Saftiana

DOI:

10.54443/morfai.v5i4.3133

Published:

2025-06-26

Downloads

Abstract

This study investigates how emerging technologies, especially Artificial Intelligence (AI) and Big Data, contribute to improving audit quality. By conducting a systematic literature review of Scopus indexed articles published from 2019 to 2024, the research highlights both the opportunities and challenges involved in implementing these technologies within auditing practices. The findings reveal that AI contributes significantly to audit quality by automating repetitive tasks, improving fraud detection, enhancing data analysis, and enabling more informed auditor judgment. Furthermore, the use of AI and digital tools has been shown to increase efficiency and reduce audit costs. Several challenges persist, including ethical concerns, data security risks, technological readiness disparities among audit firms, and a lack of clear regulatory standards. The study synthesizes theoretical and empirical insights using various frameworks such as Agency Theory, Institutional Theory, and the Technology-Organization-Environment framework, offering a multidimensional understanding of AI adoption in auditing. The results underscore the necessity for auditors to adjust to rapidly advancing technological developments while upholding ethical standards and professional skepticism. This study adds to the expanding discussion on the digital transformation of auditing practices by highlighting the balance between technological innovation and audit integrity.

Keywords:

Audit Quality Artificial Intelligence Big Data

References

Adawiyah, D. (2022). Perilaku auditor menyikapi munculnya artificial intelligence dalam proses audit. Jurnal Publikasi Ekonomi Dan Akuntansi, 2(1), 52-60. https://doi.org/10.51903/jupea.v2i1.152

Adeoye, I., Akintoye, I., Aguguom, T., & Olagunju, O. (2023). Artificial intelligence and audit quality: implications for practicing accountants. Asian Economic and Financial Review, 13(11), 756-772. https://doi.org/10.55493/5002.v13i11.4861

al-Ma'aitah, R., Al-Hajaya, K., Sawan, N., & Alzeban, A. (2024). The impact of remote auditing on audit quality: the moderating role of technology readiness. Managerial Auditing Journal, 39(6), 624-647. https://doi.org/10.1108/maj-02-2024-4210

Al-Shaer, H., & Zaman, M. (2022). Artificial intelligence in auditing: Challenges and opportunities. Journal of International Accounting, Auditing and Taxation, 48. https://doi.org/10.1016/j.intaccaudtax.2022.100495

Alotaibi, E. and Alnesafi, A. (2023). Assessing the impact of audit software on audit quality: auditors' perceptions. International Journal of Applied Economics Finance and Accounting, 17(1), 97-108. https://doi.org/10.33094/ijaefa.v17i1.1068

Ananda, R. (2024). Assessment audit: how artificial intelligence affected audit quality of sustainability report based on auditors perspective. Information Management and Business Review, 16(3(I)S), 152-158. https://doi.org/10.22610/imbr.v16i3(i)s.4049

Antwi, et al. (2024). Enhancing audit accuracy: the role of ai in detecting financial anomalies and fraud. Finance & Accounting Research Journal, 6(6), 1049-1068. https://doi.org/10.51594/farj.v6i6.1235

Ayling, J., & Chapman, A. (2021). Putting ai ethics to work: are the tools fit for purpose?. Ai and Ethics, 2(3), 405-429. https://doi.org/10.1007/s43681-021-00084-x

Černevičienė, J., & Kabasinskas, A. (2024). Explainable artificial intelligence (XAI) in finance: a systematic literature review. Artificial Intelligence Review, 57(8). https://doi.org/10.1007/s10462-024-10854-8

Dahabiyeh, L., & Mowafi, O. (2023). Challenges of using rpa in auditing: a socio‐technical systems approach. Intelligent Systems in Accounting Finance & Management, 30(2), 76-86. https://doi.org/10.1002/isaf.1537

DeFond, M. L., & Zhang, J. (2014). A Review of Archival Auditing Research. Journal of Accounting and Economics, 58(2-3), 275–326. https://doi.org/10.1016/j.jacceco.2014.09.002

Federicco, T., & Tandiono, R. (2023). An exploratory study of the familiarity and the perceptions of continuous auditing technology in indonesia. E3s Web of Conferences, 388, 03005. https://doi.org/10.1051/e3sconf/202338803005

Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process?. Review of Accounting Studies, 27(3), 938-985. https://doi.org/10.1007/s11142-022-09697-x

Francis, J. (2011). A framework for understanding and researching audit quality. Auditing: A Journal of Practice & Theory, 30(2), 125–152. https://doi.org/10.2308/ajpt-50006

García-Vera, Y., Maldonado, F., & Torres-Gallegos, V. (2023). Automatización de procesos contables mediante inteligencia artificial: oportunidades y desafíos para pequeños empresarios ecuatorianos. Revista Transdiciplinaria De Estudios Sociales Y Tecnológicos, 3(3), 68-74. https://doi.org/10.58594/rtest.v3i3.93

Gepp, A., Linnenluecke, M., O’Neill, T., & Smith, T. (2018). Big data techniques in auditing research and practice: current trends and future opportunities. Journal of Accounting Literature, 40(1), 102-115. https://doi.org/10.1016/j.acclit.2017.05.003

Ikhsan, W., Ednoer, E., Kridantika, W., & Firmansyah, A. (2022). Fraud detection automation through data analytics and artificial intelligence. Riset: Jurnal Aplikasi Ekonomi Akuntansi dan Bisnis, 4(2), 103-119. https://doi.org/10.37641/riset.v4i2.166

International Auditing and Assurance Standards Board (IAASB). (2014). A Framework for Audit Quality: Key Elements that Create an Environment for Audit Quality. International Federation of Accountants. Retrieved from https://www.ifac.org

Irman, M., Suhendra, E., & Diana, H. (2021). Work experience, professionalism, independence and the application of information technology on auditor performance in order to increasing audit quality at the financial audit agency of the republic of indonesia representative of the riau province. Journal of Applied Business and Technology, 2(3), 206-222. https://doi.org/10.35145/jabt.v2i3.78

Kawisana, P., & Jayanti, L. (2022). The effect of audit complexity of budget pressure time and auditor experience on audit quality with an understanding of information systems as a moderate variable. Journal of Tourism Economics and Policy, 2(2), 93-97. https://doi.org/10.38142/jtep.v2i2.353

Kend, M., & Nguyen, L. (2020). Big data analytics and other emerging technologies: the impact on the australian audit and assurance profession. Australian Accounting Review, 30(4), 269-282. https://doi.org/10.1111/auar.12305

Khan, F., Jan, S. U., & Zia-ul-haq, H. M. (2024). Artificial intelligence adoption, audit quality and integrated financial reporting in GCC markets. Asian Review of Accounting. https://doi.org/10.1108/ARA-03-2024-0085

Knechel, W. R., Krishnan, G. V., Pevzner, M., Shefchik, L. B., & Velury, U. K. (2020). Audit quality: Insights from the academic literature. Auditing: A Journal of Practice & Theory, 39(1), 1–38. https://doi.org/10.2308/ajpt-15-009

Kusuma, B. (2024). The impact of the covid-19 pandemic on auditing practices: a qualitative analysis. Golden Ratio of Auditing Research, 4(1), 24-32. https://doi.org/10.52970/grar.v4i1.385

Kokina, J., Pachamanova, D., & Corbett, A. (2021). The role of data analytics and AI in modern auditing. Journal of Emerging Technologies in Accounting, 18(1), 27–50. https://doi.org/10.2308/JETA-2020-003

Lugli, E., & Bertacchini, F. (2022). Audit quality and digitalization: some insights from theitalian context. Meditari Accountancy Research, 31(4), 841-860. https://doi.org/10.1108/medar-08-2021-1399

Luthfiani, A. (2024). The artificial intelligence revolution in accounting and auditing: opportunities, challenges, and future research directions. Journal of Applied Business Taxation and Economics Research, 3(5), 516-530. https://doi.org/10.54408/jabter.v3i5.290

Mihai, M. (2024). Toe framework elements used on artificial intelligence implementation in the accounting and audit sector. International Journal of Research in Business and Social Science, 13(4), 335-349. https://doi.org/10.20525/ijrbs.v13i4.3374

Noordin, N., Hussainey, K., & Hayek, A. (2022). The use of artificial intelligence and audit quality: an analysis from the perspectives of external auditors in the uae. Journal of Risk and Financial Management, 15(8), 339. https://doi.org/10.3390/jrfm15080339

Odeyemi, O., Awonuga, K., Mhlongo, N., Ndubuisi, N., Olatoye, F., & Daraojimba, A. (2023). The role of ai in transforming auditing practices: a global perspective review. World Journal of Advanced Research and Reviews, 21(2), 359-370. https://doi.org/10.30574/wjarr.2024.21.2.0460

Onwubuariri, E., Adelakun, B., Olaiya, O., & Ziorklui, J. (2024). Ai-driven risk assessment: revolutionizing audit planning and execution. Finance & Accounting Research Journal, 6(6), 1069-1090. https://doi.org/10.51594/farj.v6i6.1236

Otia, J., & Bracci, E. (2022). Digital transformation and the public sector auditing: the sai's perspective. Financial Accountability and Management, 38(2), 252-280. https://doi.org/10.1111/faam.12317

Rahman, et al. (2024). Does the adoption of artificial intelligence by audit firms and their clients affect audit quality and efficiency? evidence from china. Managerial Auditing Journal, 39(6), 668-699. https://doi.org/10.1108/maj-03-2023-3846

Ríkharðsson, P., Þórisson, K., Bergthorsson, G., & Batt, C. (2022). Artificial intelligence and auditing in small‐ and medium‐sized firms: expectations and applications. Ai Magazine, 43(3), 323-336. https://doi.org/10.1002/aaai.12066

Russell, S. J., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Schreuder, A., & Smuts, H. (2023). Perspective chapter: audit digitalization – key impacts on the audit profession. https://doi.org/10.5772/intechopen.109042

Seethamraju, R., & Hecimovic, A. (2022). Adoption of artificial intelligence in auditing: an exploratory study. Australian Journal of Management, 48(4), 780-800. https://doi.org/10.1177/03128962221108440

Sun, T. & Vasarhelyi, M. (2018). Embracing textual data analytics in auditing with deep learning. IJDAR, 49-67. https://doi.org/10.4192/1577-8517-v18_3

Author Biographies

Jesica Ramadanty, Universitas Sriwijaya

Author Origin : Indonesia

Hasni Yusrianti, Universitas Sriwijaya

Author Origin : Indonesia

Yulia Saftiana, universitas Sriwijaya

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Ramadanty, J., Hasni Yusrianti, & Yulia Saftiana. (2025). ADVANCING AUDIT QUALITY THROUGH EMERGING TECHNOLOGIES: EXPLORING OPPORTUNITIES AND OVERCOMING CHALLENGES. Multidiciplinary Output Research For Actual and International Issue (MORFAI), 5(4), 1935–1945. https://doi.org/10.54443/morfai.v5i4.3133

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.