ANALYSIS OF THE EFFECT OF CONCRETE QUALITY IN HOUSE CONSTRUCTION: A DECISION-MAKING MODEL BASED ON ENVIRONMENTALLY FRIENDLY CRITERIA
DOI:
10.54443/morfai.v5i5.4882Published:
2026-01-06Downloads
Abstract
This study analyzes the influence of concrete quality on house construction using a Decision Tree. Good concrete quality and proper maintenance are key factors for building sturdiness and longevity, especially in areas with varying environmental conditions. The study was conducted on 20 houses in three regions of Aceh, with samples selected purposively based on concrete quality documentation (K-225, K-300, K-350) and maintenance records. Data were collected through observation, project documentation, and interviews with contractors and builders. The analysis included descriptive, inferential (correlation and multiple regression), and the application of a Decision Tree to identify the concrete parameters most influential on building quality. The results indicate that concrete quality is the most critical factor, followed by maintenance quality and environmental conditions. Houses with high-quality concrete (K-300/K-350) and a minimum curing period of 14 days have optimal sturdiness, minimal cracking, and a longer service life. The Decision Tree produced a consistent pattern with 82.5% accuracy, while qualitative data reinforces these findings by emphasizing the importance of maintenance protocols and the quality of implementation in the field. This research provides practical implications in the form of minimum quality recommendations, standard maintenance protocols, and enhanced quality control. The results contribute to the development of a data-driven decision-making framework for selecting efficient, safe, and sustainable concrete specifications.
Keywords:
concrete quality, house construction, Decision Tree, concrete maintenance, AcehReferences
Alghamdi, S. J. (2022). Classifying high strength concrete mix design methods using decision trees. Materials, 15(5), 1950. https://doi.org/10.3390/ma15051950.
An, J., Kim, S. S., Nam, B. H., & Durham, S. A. (2017). Effect of aggregate mineralogy and concrete microstructure on thermal expansion and strength properties of the normal strength concrete. Applied Sciences, 7(12), 1307. https://doi.org/10.3390/APP7121307.
Bratt, R. G. (2002). Housing and family well-being. Housing studies, 17(1), 13-26. https://doi.org/10.1080/02673030120105857.
Alfandi, B., Basirun, B., & Rizki, A. M. (2021). ANALISA PENGARUH PENGGUNAAN SUPERPLASTIZER TERHADAP PENGGUNAAN AIR DAN KUAT TEKAN BETON MUTU FC 25 MPA. Structure, 3(2), 158-161. https://doi.org/10.31000/civil.v3i2.7166.
Chaube, S., Pant, S., Kumar, A., Uniyal, S., Singh, M. K., Kotecha, K., & Kumar, A. (2024). An overview of multi-criteria decision analysis and the applications of AHP and TOPSIS methods. International Journal of Mathematical, Engineering and Management Sciences, 9(3), 581. https://doi.org/10.33889/ijmems.2024.9.3.030.
Chidiac, S. E., Maadani, O., Razaqpur, A. G., & Mailvaganam, N. P. (2003). Correlation of rheological properties to durability and strength of hardened concrete. Journal of Materials in Civil Engineering, 15(4), 391-399. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(391).
Doloi, H., Sawhney, A., Iyer, K. C., & Rentala, S. (2012). Analysing factors affecting delays in Indian construction projects. International journal of project management, 30(4), 479-489. https://doi.org/10.1016/j.ijproman.2011.10.004.
Firek, K., Rusek, J., & Wodyński, A. (2015). Decision trees in the analysis of the intensity of damage to portal frame buildings in mining areas. Archives of Mining Sciences, 60(3). https://doi.org/10.1515/AMSC-2015-0055.
Forero, J. A., Brito, J. D., Evangelista, L., & Pereira, C. (2022). Improvement of the quality of recycled concrete aggregate subjected to chemical treatments: a review. Materials, 15(8), 2740. https://doi.org/10.3390/ma15082740.
Fullilove, M. T. (2010). Housing is health care. American journal of preventive medicine, 39(6), 607-608. https://doi.org/10.1016/j.amepre.2010.09.017.
Hale, A. J., Ricotta, D. N., Freed, J., Smith, C. C., & Huang, G. C. (2019). Adapting Maslow's hierarchy of needs as a framework for resident wellness. Teaching and learning in medicine, 31(1), 109-118. https://doi.org/10.1080/10401334.2018.1456928.
Lane, T., Russo, D. P., Zorn, K. M., Clark, A. M., Korotcov, A., Tkachenko, V., ... & Ekins, S. (2018). Comparing and validating machine learning models for mycobacterium tuberculosis drug discovery. Molecular pharmaceutics, 15(10), 4346-4360. https://doi.org/10.1021/acs.molpharmaceut.8b00083.
Lin, W. T. (2020). Effects of sand/aggregate ratio on strength, durability, and microstructure of self-compacting concrete. Construction and Building Materials, 242, 118046. https://doi.org/10.1016/j.conbuildmat.2020.118046.
Mangkoesoebroto, G. (1992). Pengaruh pajak atas harga tanah. Journal of Indonesian Economy and Business (JIEB), 7(1), 55-69.
Maçãs, C., Campos, J. R., Lourenço, N., & Machado, P. (2024). Visualisation of random Forest classification. Information Visualization, 23(4), 312-327. https://doi.org/10.1177/14738716241260745.
McCray, J. W., & Day, S. S. (1977). Housing values, aspirations, and satisfactions as indicators of housing needs. Home economics research journal, 5(4), 244-254. https://doi.org/10.1177/1077727X7700500404.
Meng, L. L., Abdullah, A., Fern, T. S., Badarulzaman, N., & Hassan, A. S. (2006). How we failed to plan for habitability. Planning Malaysia, 4. https://doi.org/10.21837/PMJOURNAL.V4.I1.50.
Papadakis, V., Vayenas, C., & Fardis, M. (1991). Physical and chemical characteristics affecting the durability of concrete. Materials Journal, 88(2), 186-196. https://doi.org/10.14359/1993.
Proboyo, B. (1999). Keterlambatan waktu pelaksanaan proyek klasifikasi dan peringkat dari penyebab-penyebabnya. Civil Engineering Dimension, 1(1), 46-58. https://doi.org/10.9744/CED.1.1.PP.
Qian, Y., Sufian, M., Accouche, O., & Azab, M. (2022). Advanced machine learning algorithms to evaluate the effects of the raw ingredients on flowability and compressive strength of ultra-high-performance concrete. Plos one, 17(12), e0278161.
Resatoglu, R., & Jkhsi, S. (2022). Evaluation of Ductility of Reinforced Concrete Structures with Shear Walls having Different Thicknesses and Different Positions. IIUM Engineering Journal, 23(2), 32-44. https://doi.org/10.31436/iiumej.v23i2.2070. https://doi.org/10.1371/journal.pone.0278161.
Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural processes, 148, 56-62. https://doi.org/10.1016/j.beproc.2018.01.004.
Seo, H. J., & Yoon, Y. G. (2025). Analyzing research trends in smart construction safety: A topic modeling approach. Buildings, 15(4), 520. https://doi.org/10.3390/buildings15040520.
[Song, H., Ahmad, A., Farooq, F., Ostrowski, K. A., Maślak, M., Czarnecki, S., & Aslam, F. (2021). Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Construction and Building Materials, 308, 125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.
Wahono, R. S. (2015). Penerapan Naive Bayes untuk Mengurangi Data Noise pada Klasifikasi Multi Kelas dengan Decision Tree. Journal of Intelligent Systems, 1(2), 136-142.
Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A., & Garboczi, E. J. (1994). Percolation and pore structure in mortars and concrete. Cement and concrete research, 24(1), 25-37. https://doi.org/10.1016/0008-8846(94)90079-5.
Yetti, Y., & Yalid, Y. (2022). Konsekuensi Hukum Pemasaran Dan Jual Beli Rumah Dalam Proses Pembangunan (Studi PT. Pratama Hutama Jaya). Jurnal IUS Kajian Hukum dan Keadilan, 10(1), 243-261. https://doi.org/10.29303/ius.v10i1.910.
License
Copyright (c) 2025 Burhanuddin, Badriana, Ezwarsyah, Syukriah, Bakhtiar, Fadliani

This work is licensed under a Creative Commons Attribution 4.0 International License.




