EKSPLORASI PENERAPAN TEKNOLOGI ARTIFICAL INTELLIGENCE DALAM KUALITAS AUDIT– SYSTEMATIC LITERATURE REVIEW

-

Authors

Putri Milenia Hadiwianti , Syafrizal Ikram

DOI:

10.54443/morfai.v6i2.4955

Published:

2026-01-17

Downloads

Abstract

The rapid evolution of digital technology has significantly transformed the landscape of the public accounting profession. One of the most disruptive innovations is the implementation of Artificial Intelligence (AI) within auditing processes. This study aims to explore how the integration of AI technology affects audit quality and to identify the opportunities and challenges arising from its implementation. The research methodology employed is a Systematic Literature Review (SLR) of reputable journal articles published over the last ten years. The literature selection process followed the PRISMA protocol to ensure transparency and objectivity of the findings. The analysis was conducted on various literatures discussing the use of machine learning, natural language processing, and robotic process automation in auditing procedures. The results of the literature review indicate that the application of AI contributes positively to the improvement of audit quality through more accurate anomaly detection, real-time processing of large data volumes, and the reduction of human error risks. AI enables auditors to shift from sample-based testing toward full population auditing, which directly enhances the level of audit assurance. However, this study also identifies crucial challenges such as algorithmic ethics, the need for new digital competencies for auditors, and the high cost of technological infrastructure investment.

Keywords:

Artificial Intelligence kualitas audit Systematic Literature Review transformasi digital auditor

References

Adeoye, IO, Akintoye, R.I., Aguguom, T.A., & Olagunju, O.A. (2023). Artificial intelligence and audit quality: Implications for practicing accountants. Asian Economic and Financial Review, 13(11), 756–772.https://doi.org/10.55493/5002.v13i11.4861

Adhiputra, MW (2015). Analysis of factors influencing the acceptance of information technology using the Technology Acceptance Model (TAM). Journal of Computer Science and Information Systems, 3(2), 45–56.

Alassuli, A. (2025). Impact of artificial intelligence using the robotic process automation system on the efficiency of internal audit operations at Jordanian commercial banks. Banks and Bank Systems, 20(1), 122–135.https://doi.org/10.21511/bbs.20(1).2025.11

Aljaaidi, KS, Alwadani, NF, & Adow, AH (2023). The impact of artificial intelligence applications on the performance of accountants and audit firms in Saudi Arabia. International Journal of Data and Network Science, 7(3), 1165–1178.https://doi.org/10.5267/j.ijdns.2023.5.007

Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of Big Data by the audit profession. Accounting Horizons, 29(2), 439–449.https://doi.org/10.2308/acch-51067

Almaqtari, F.A., Farhan, NHS, Al-Hattami, HM, Elsheikh, T., & Al-dalaien, BOA (2024). The impact of artificial intelligence on information audit usage: Evidence from developing countries. Journal of Open Innovation: Technology, Markets, and Complexity, 10(2), 100298.https://doi.org/10.1016/j.joitmc.2024.100298

Almufadda, S., & Almezeini, N. (2022). A review of AI adoption in the auditing profession: Trends and implications. Journal of Accounting and Organizational Change, 18(4), 533–551.https://doi.org/10.1108/JAOC-03-2022-0032

Austin, A.A., Carpenter, T.D., Christ, M.H., & Nielson, C.S. (2021). The data analytics journey: Interactions among auditors, managers, regulation, and technology. Contemporary Accounting Research, 38(3), 1888–1924.https://doi.org/10.1111/1911-3846.12680

Bell, T. B., Peecher, M. E., & Solomon, I. (2005). The 21st century public company audit: Conceptual elements of KPMG's global audit methodology. Auditing: A Journal of Practice & Theory, 24(1), 151–165.https://doi.org/10.2308/aud.2005.24.1.151

Carcello, J. V., & Nagy, A. L. (2004). Audit firm tenure and fraudulent financial reporting. Auditing: A Journal of Practice & Theory, 23(2), 55–69.https://doi.org/10.2308/aud.2004.23.2.55

Carvalho, A. V., & Esteban-Navarro, M. (2016). Intelligence audit: Planning and assessment of organizational intelligence systems. Journal of Librarianship and Information Science, 48(1), 47–59.https://doi.org/10.1177/0961000614536198

Chávez-Díaz, J.M., Aquiño-Perales, L., De-Velazco-Borda, J.L., Villagómez-Chinchay, J.A., & Flores-Sotelo, W.S. (2024). Artificial intelligence in accounting and auditing: Bibliometric analysis in Scopus 2020–2023. Indonesian Journal of Electrical Engineering and Computer Science, 36(2), 1319–1328.https://doi.org/10.11591/ijeecs.v36.i2.pp1319-1328

Commerford, B. P., Dennis, S. A., Joe, J. R., & Wang, K. (2022). Man versus machine: Complex estimates and auditor reliance on artificial intelligence. The Accounting Review, 97(1), 117–140.https://doi.org/10.2308/TAR-2019-0485

Dai, X., & Zhu, W. (2022). Intelligent financial auditing model based on deep learning. Computational Intelligence and Neuroscience, 2022, 8282854.https://doi.org/10.1155/2022/8282854

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.

Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

DeAngelo, L. E. (1981). Auditor size and audit quality. Journal of Accounting and Economics, 3(3), 183–199.https://doi.org/10.1016/0165-4101(81)90002-1

DeFond, M. L., & Zhang, J. (2014). A review of archival auditing research. Journal of Accounting and Economics, 58(2–3), 275–326.https://doi.org/10.1016/j.jacceco.2014.09.002

Dillon, A. (1997). User acceptance of information technology. In M. Helander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of human-computer interaction (pp. 877–889). Elsevier.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296.https://doi.org/10.1016/j.jbusres.2021.04.070

Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27(3), 938–985.https://doi.org/10.1007/s11142-022-09697-x

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.

Francis, J. (2004). What do we know about audit quality? The British Accounting Review, 36(4), 345–368.https://doi.org/10.1016/j.bar.2004.09.003

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280.https://doi.org/10.1016/j.techfore.2016.08.019

Gu, H., Schreyer, M., Moffitt, K., & Vasarhelyi, M. (2024). Artificial intelligence co-piloted auditing. International Journal of Accounting Information Systems, 54, 100698.https://doi.org/10.1016/j.accinf.2024.100698

Han, H., Shiwakoti, R.K., Jarvis, R., Mordi, C., & Botchie, D. (2023). Accounting and auditing with blockchain technology and artificial intelligence: A literature review. International Journal of Accounting Information Systems, 48, 100598.https://doi.org/10.1016/j.accinf.2022.100598

Hidayat, NU, & Lindrianasari, L. (2025). Evaluating financial audit efficiency: The role of artificial intelligence in proactive negligence mitigation. Edelweiss Applied Science and Technology, 9(4), 1437–1446.https://doi.org/10.55214/25768484.v9i4.6311

Hilario, M., Paredes, P., Mayhuasca, J., Liendo, M., & Martínez, S. (2024). Evaluation of the impact of artificial intelligence on the systems audit process. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 184–202.https://doi.org/10.58346/JOWUA.2024.I3.013

Hu, K.-H., Chen, F.-H., Hsu, M.-F., & Tzeng, G.-H. (2023). Governance of artificial intelligence applications in a business audit via a fuzzy fusion multiple rule-based decision-making model. Financial Innovation, 9(1), 117.https://doi.org/10.1186/s40854-022-00436-4

IAASB. (2014). A framework for audit quality: Key elements that create an environment for audit quality. International Auditing and Assurance Standards Board.https://www.ifac.org/publications-resources/framework-audit-quality

Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20.https://doi.org/10.2308/jeta-10511

Izquierdo Triana, H., Fernández, J. L., & Ballesté, E. (2017). Audit of a competitive intelligence unit. The International Journal of Intelligence, Security, and Public Affairs, 19(3), 214–241.https://doi.org/10.1080/23800992.2017.1384679

Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305–360.https://doi.org/10.1016/0304-405X(76)90026-X

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415

Kilgore, A., Harrison, G., & Radich, R. (2014). Audit quality: What's important to users of audit services. Managerial Auditing Journal, 29(9), 776–799.https://doi.org/10.1108/MAJ-08-2014-1062

Knechel, W.R., Krishnan, G.V., Pevzner, M., Shefchik, L.B., & Velury, U.K. (2013). Audit quality: Insights from the academic literature. Auditing: A Journal of Practice & Theory, 32(Supplement 1), 385–421.https://doi.org/10.2308/ajpt-50350

Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122.https://doi.org/10.2308/jeta-51730

Kokina, J., Blanchette, S., Davenport, T.H., & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information Systems, 56, 100734.https://doi.org/10.1016/j.accinf.2025.100734

Kusumawati, R., & Wibowo, A. (2021). Audit failure and public trust: Lessons from Indonesia. Indonesian Journal of Accounting and Auditing, 25(2), 115–127.

Lehner, O.M., Ittonen, K., Silvola, H., Ström, E., & Wührleitner, A. (2022). Artificial intelligence based decision-making in accounting and auditing: Ethical challenges and normative thinking. Accounting, Auditing & Accountability Journal, 35(9), 109–135.https://doi.org/10.1108/AAAJ-09-2020-4934

Leocádio, D., Malheiro, L., & Reis, J. (2024). Artificial intelligence in auditing: A conceptual framework for auditing practices. Administrative Sciences, 14(10), 238.https://doi.org/10.3390/admsci14100238

Li, Y., & Goel, S. (2025). Artificial intelligence auditability and auditor readiness for auditing artificial intelligence systems. International Journal of Accounting Information Systems, 56, 100739.https://doi.org/10.1016/j.accinf.2025.100739

Libby, R., & Witz, P. D. (2024). Can artificial intelligence reduce the effect of independence conflicts on audit firm liability? Contemporary Accounting Research, 41(2), 1346–1375.https://doi.org/10.1111/1911-3846.12941

Mpofu, FY (2023). The application of artificial intelligence in external auditing and its implications on audit quality? A review of the ongoing debates. International Journal of Research in Business and Social Science, 12(9), 496–512.https://doi.org/10.20525/ijrbs.v12i9.2737

Munoko, I., Brown-Liburd, H.L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167(2), 209–234.https://doi.org/10.1007/s10551-019-04407-1

Muñoz-Izquierdo, N., Camacho-Miñano, M.-d.-M., Segovia-Vargas, M.-J., & Pascual-Ezama, D. (2019). Is the external audit report useful for bankruptcy prediction? Evidence using artificial intelligence. International Journal of Financial Studies, 7(2), 20.https://doi.org/10.3390/ijfs7020020

Murikah, W., Nthenge, J. K., & Musyoka, F. M. (2024). Bias and ethics of AI systems applied in auditing - A systematic review. Scientific African, 25, e02281.https://doi.org/10.1016/j.sciaf.2024.e02281

Moses, AMH (2024). Detecting the effect of artificial intelligence on internal audit performance: Empirical study in Saudi Arabia. Decision Science Letters, 13(4), 967–976.https://doi.org/10.5267/j.dsl.2024.7.003

Musa, AMH, & Lefkir, H. (2024). The role of artificial intelligence in achieving auditing quality for small and medium enterprises in the Kingdom of Saudi Arabia. International Journal of Data and Network Science, 8(2), 835–844.https://doi.org/10.5267/j.ijdns.2023.12.021

Nelson, M. W. (2009). A model and literature review of professional skepticism in auditing. Auditing: A Journal of Practice & Theory, 28(2), 1–34.https://doi.org/10.2308/aud.2009.28.2.1

Olusegun, J. (nd). The impact of artificial intelligence on financial audits: Enhancing accuracy and efficiency.

Organization for Economic Co-operation and Development (OECD). (2023). About the OECD. OECD. https://www.oecd.org/about/

Palmrose, Z.-V. (1988). An analysis of auditor litigation and audit service quality. The Accounting Review, 63(1), 55–73.https://www.jstor.org/stable/247685

Phan, H.-T., Nguyen, P.-H., Nguyen, C.-T., Vo, T.-TT, & Nguyen, T.-T. (2021). Effect of emotional intelligence on auditors' judgment and audit sustainability: Empirical evidence from Vietnam. Problems and Perspectives in Management, 19(2), 333–345.https://doi.org/10.21511/ppm.19(2).2021.27

Power, M. (1997). The audit society: Rituals of verification. Oxford University Press.

Qader, K.S., & Cek, K. (2024). Influence of blockchain and artificial intelligence on audit quality: Evidence from Turkey. Heliyon, 10(9), e30166.https://doi.org/10.1016/j.heliyon.2024.e30166

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.https://doi.org/10.5465/amr.2018.0072

Saad, R. (2021). The role of artificial intelligence techniques in achieving audit quality. [Journal name missing], 25(5).

Schiff, D.S., Kelley, S., & Camacho Ibáñez, J. (2024). The emergence of artificial intelligence ethics auditing. Big Data & Society, 11(4), 20539517241299732.https://doi.org/10.1177/20539517241299732

Seethamraju, R., & Hecimovic, A. (2023). Adoption of artificial intelligence in auditing: An exploratory study. Australian Journal of Management, 48(4), 780–800.https://doi.org/10.1177/03128962221108440

Sikka, P. (2009). Financial crisis and the silence of the auditors. Accounting, Organizations and Society, 34(6-7), 868–873

Syamsuddin, R., Indrijawati, A., & Bandang, A. (2023). Effect of competence, whistleblower, and audit probability on. International Journal of Professional Business Review, 8(4), e01525.https://doi.org/10.26668/businessreview/2023.v8i4.1525

Tan, J., Chang, S., Zheng, Y., & Chan, K. C. (2025). Effects of artificial intelligence in the modern business: Client artificial intelligence applications and audit quality. International Review of Financial Analysis, 104, 104271.https://doi.org/10.1016/j.irfa.2025.104271

Tepalagul, N., & Lin, L. (2015). Auditor independence and audit quality: A literature review. Journal of Accounting, Auditing & Finance, 30(1), 101–121.https://doi.org/10.1177/0148558X14544505

Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.

Torroba, M., Sánchez, J.R., López, L., & Callejón, Á. (2025). Investigating the impacting factors for audit professionals to adopt data analysis and artificial intelligence: Empirical evidence for Spain. International Journal of Accounting Information Systems, 56, 100738.https://doi.org/10.1016/j.accinf.2025.100738

van Eck, N.J., & Waltman, L. (2010). Survey software: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.https://doi.org/10.1007/s11192-009-0146-3

Wassie, F. A., & Lakatos, L. P. (2024). Artificial intelligence and the future of the internal audit function. Humanities and Social Sciences Communications, 11(1), 386.https://doi.org/10.1057/s41599-024-02905-w

Wilks, T. J., & Zimbelman, M. F. (2004). Decomposition of fraud-risk assessments and auditors' sensitivity to fraud cues. Contemporary Accounting Research, 21(3), 719–745.https://doi.org/10.1506/V3Y6-9TML-0T4T-GC4J

Yuniarti, R., Novriela, BC, & Rahmadona, F. (2021). The Effect of Audit Fees and Audit Tenure on Audit Quality. PSYCHOLOGY AND EDUCATION.

Zhang, C., Cho, S., & Vasarhelyi, M. (2022). Explainable artificial intelligence (XAI) in auditing. International Journal of Accounting Information Systems, 46, 100572.https://doi.org/10.1016/j.accinf.2022.100572

Zhao, M., Li, Y., & Lu, J. (2022). The effect of audit team's emotional intelligence on reduced audit quality behavior in audit firms: Considering the mediating effect of team trust and the moderating effect of knowledge sharing. Frontiers in Psychology, 13, 1082889.https://doi.org/10.3389/fpsyg.2022.1082889

Author Biographies

Putri Milenia Hadiwianti, Universitas Widyatama

Author Origin : Indonesia

Syafrizal Ikram, Universitas Widyatama, Bandung

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Putri Milenia Hadiwianti, & Syafrizal Ikram. (2026). EKSPLORASI PENERAPAN TEKNOLOGI ARTIFICAL INTELLIGENCE DALAM KUALITAS AUDIT– SYSTEMATIC LITERATURE REVIEW: -. Multidiciplinary Output Research For Actual and International Issue (MORFAI), 6(2), 2180–2192. https://doi.org/10.54443/morfai.v6i2.4955

Similar Articles

<< < 31 32 33 34 35 36 37 38 39 40 > >> 

You may also start an advanced similarity search for this article.