SENTIMENT ANALYSIS OF TEACHER PERFORMANCE ASSESSMENT (SMKS HASSINA SUKABUMI)
Main Article Content
Yossy Rosalinda
Slamet Sutrisno
Dana Budiman
Teacher performance assessment is an important instrument in improving the quality of education, especially at the Vocational High School (SMK) level. This study aims to analyze sentiment towards teacher performance assessment at SMKS Hassina Sukabumi using a sentiment analysis approach. Research data were obtained through surveys and reviews from students, colleagues, and school management who provided assessments of teacher performance based on pedagogical, professional, personality, and social indicators. The method used was text mining-based sentiment analysis with Orange software on qualitative data in the form of open responses, comments, and testimonials collected through interviews. The results showed that most assessments had positive sentiment, reflecting appreciation for teacher competence and dedication. However, negative sentiment was also found, indicating the need for improvements in aspects of learning innovation and technology utilization. These findings are expected to serve as a basis for school management in formulating more effective teacher professional development strategies, as well as input in the ongoing evaluation process to improve the quality of learning at SMKS Hassina Sukabumi.
Ramadhan, F., Hafid, A., & Badrudin, B. (2024). Manajemen penilaian kinerja guru dalam proses pembelajaran. Jurnal Lentera, 23(1). https://doi.org/10.29138/lentera.v23i1.1358
Arvianto, A., et al. (2024). Analisis penilaian kinerja guru menggunakan metode multifactor. JP2SD, 9(2). Retrieved from http://ejournal.umm.ac.id/index.php/jp2sd/article/download/34801/15273/127163
Wahyudin, A. (2023). Teacher performance assessment at MTs Negeri 6 Kediri. MPI Journal, 5(1). Retrieved from https://ejournal.unsuda.ac.id/index.php/MPI/article/download/23/22
Fernandez, J. M. (2023). Sentiment analysis: Student evaluations of teaching. Social Science Quarterly, 104(2). https://onlinelibrary.wiley.com/doi/abs/10.1002/soej.12787
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
Mooney, R. J. (2006). Text mining: Extracting knowledge from unstructured data. Proceedings of the 2006 ACM Symposium on Applied Computing, 983–984. https://doi.org/10.1145/1141277.1141514
Rani, P., & Arora, J. (2016). Text preprocessing: A critical step for text mining. International Journal of Computer Science and Information Technologies, 7(3), 1656–1659. https://www.ijcsit.com/docs/Volume%207/vol7issue3/ijcsit2016070325.pdf
Sagala, D., & Toba, H. (2021). Sentiment analysis using VADER lexicon for social media data. Journal of Physics: Conference Series, 1933(1), 012050. https://doi.org/10.1088/1742-6596/1933/1/012050
Y, J., Zhang, Y., & Chen, Y. (2016). Topic modeling based on LDA for text mining. Journal of Information Science, 42(2), 173–185. https://doi.org/10.1177/0165551515598335
Zulhanif, A. (2016). Implementasi metode LDA (Latent Dirichlet Allocation) dalam analisis topik. Jurnal Teknologi Informasi dan Komputer, 3(2), 45–52. https://doi.org/10.30812/jtik.v3i2.56
Orange (software). (2024, September 20). Wikipedia. https://en.wikipedia.org/wiki/Orange_(software)
Suryani, E., Zainal Abidin, A., & Kurniati. (2019). Meningkatkan kompetensi guru melalui Penilaian Kinerja Guru (PKG) Madrasah Ibtidaiyah Kecamatan Kalapanunggal Kabupaten Sukabumi [Penelitian Tindakan]. Jurnal Teknologi Pendidikan, 10(1). https://doi.org/10.32832/tek.pend.v10i1.3994
Ramli, & Jalinus, N. (2023). Evaluasi Kinerja Guru Sekolah Menengah Kejuruan Sumatera Barat Pascasertifikasi. Jurnal Penelitian dan Evaluasi Pendidikan, 17(1). https://doi.org/10.21831/pep.v17i1.1362
Yusniaini, A., Maryati, M., & Permana, H. (2024). Manajemen Penilaian Kinerja Guru. Tabyin: Jurnal Pendidikan Islam, 1(01). https://doi.org/10.70281/tabyin.v1i01.931