A SENTIMENT ANALYSIS OF EMPLOYEE COMPETENCE IN BPR (PEOPLE'S ECONOMIC BANK) SUKABUMI
Main Article Content
Heri Firmansyah
Slamet Sutrisno
Dana Budiman
This study aims to analyze sentiment towards employee competency at BPR Sukabumi using a text mining approach based on sentiment analysis. Employee competency is one of the key factors in determining the effectiveness and productivity of an organization, especially in the banking sector which is highly dependent on service quality and customer trust. The data used in this study were obtained from various sources, such as internal surveys, customer reviews, and comments on social media related to BPR Sukabumi employee service. The analysis method used is sentiment analysis based on text mining with Orange software on qualitative data in the form of open responses, comments, and testimonials collected through interviews to identify patterns of public perception towards aspects of employee competency, such as communication skills, technical expertise, responsibility, and service orientation. The results of customer research and interview results show a positive view towards employee competency, with 55% satisfied responses, 35% neutral, and 10% negative. The analysis focuses on speed of service, ease of access, improvement of technical competency, and transparency of information. These findings provide important input for BPR Sukabumi management in improving employee training and development programs to strengthen the competencies needed to meet customer expectations and the challenges of the banking industry. This study provides a methodological contribution in the use of sentiment analysis for human resource evaluation in the financial services sector.
Adinda, O. :, Cantika, P., Dwiyanto, A. S., Ekonomi, F., Bisnis, D., & Paramadina, U. (2025). Analisis Pengaruh Kompetensi Pegawai Terhadap Produktivitas Kerja: Studi Kasus Pada PT PLN Icon Plus. 13(2), 312–319 https://doi.org/10.37081/ed.v13i2.7067
Arofah, S., Astuti, R., & Basysyar, F. M. (2024). Analisis Sentimen Pemakaian Sistem Absensi Berbasis Web Untuk Pegawai Asn Di Kabupaten Cirebon Menggunakan Metode Algoritma Naïve Bayes. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 3).
Azzahra, S. A., & Wibowo, A. (2020). Analisis Sentimen Multi-Aspek Berbasis Konversi Ikon Emosi Dengan Algoritme Naïve Bayes Untuk Ulasan Wisata Kuliner Pada Web Tripadvisor. 7(4). Https://Doi.Org/10.25126/Jtiik.202071907
Bimantara, M. D., & Zufria, I. (2024). Text Mining Sentiment Analysis On Mobile Banking Application Reviews Using Tf-Idf Method With Natural Language Processing Approach. Jinav : Journal Of Information And Visualization, 5(1), 115–123. Https://Doi.Org/10.35877/454ri.Jinav2772
Melsindy, P. (2024). Pengaruh Kompetensi Dan Kecerdasan Emosional Terhadap Kinerja Pegawai Pada Universitas Tjut Nyak Dhien. 2 No.3. Indah Nurhafida, S., & Sembiring, F. (2021). Analisis Text Clustering Masyarakat Di Twiter Mengenai Mcdonald’sxbts Menggunakan Orange Data Mining.
Ishak, A., Siregar, K., Asfriyati, Ginting, R., & Afif, M. (2020). Orange Software Usage In Data Mining Classification Method On The Dataset Lenses. Iop Conference Series: Materials Science And Engineering, 1003(1). Https://Doi.Org/10.1088/1757-899x/1003/1/012113
Liken Anggoro, A., Ken, L. V. P., & Setiawan, M. G. (2023). Analisis Media Text Clustering Pada Twitter Akan Kasus Selebriti Menggunakan Orange Data Mining. Remik, 7(1), 189–195. Https://Doi.Org/10.33395/Remik.V7i1.12001
Mardiani, E., Rahmansyah, N., Kurniati, I., Matondang, N., Tesalonika, T., Zanitha, D. A., & Romzy, I. (2023). Membandingkan Algoritma Data Mining Dengan Tools Orange Untuk Social Economy. Digital Transformation Technology, 3(2), 686–693. Https://Doi.Org/10.47709/Digitech.V3i2.3256
Nur Rahmah, H., & Rini Sulistiyowati, Dan. (N.D.). Penggunaan Software Orange Data Mining Pada Implementasi Text Mining Dalam Analisis Sentimen Netizen Di Twitter Terhadap Kelangkaan Minyak Goreng Implementation Of Text Mining In Netizen Sentiment Analysis On Twitter On Cooking Oil Scarcity Using Orange Data Mining Software.
Pahtoni, T. Y., & Jati, H. (2024). Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(2), 329–336. Https://Doi.org/10.25126/jtiik.20241127276
Rifaldi, D., Abdul Fadlil, & Herman. (2023). Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet “Mental Health.” Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 161–171. https://doi.org/10.51454/decode.v3i2.131
Pratiwi, R. W., H, S. F., Dairoh, D., Af’idah, D. I., A, Q. R., & F, A. G. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 4(1), 40–46. https://doi.org/10.20895/inista.v4i1.387
Muktafin, E. H., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32–42. https://doi.org/10.30864/eksplora.v10i1.390